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RECENT RESULTS ON QUASILINEAR

DIFFERENTIAL EQUATIONS. II

Pavel Drábek

Abstract. This lecture follows joint result of the speaker, Petr Girg, Pe-
ter Takáč and Michael Ulm. We concentrate on the Fredholm alternative

for the p-Laplacian at the first eigenvalue. In contrast with the linear case
(p = 2), the nonlinear case (p �= 2) appears to be completely different not
only concerning the methods (which cannot benefit from the linear structure
of the problem and the Hilbert structure of the function spaces) but also
from the point of view of the results which seem to be rather surprizing. In
particular, the difference between the cases 1 < p < 2 and p > 2 is quite
interesting. The main tool to prove existence and multiplicity results is “the
bifurcation from infinity” argument.

1. Introduction

These lecture notes are “copy and paste” of selected parts of the joint paper
of the speaker and P. Girg, P. Takáč and M. Ulm [13]. We refer the
reader to that paper for the proofs which are omitted here for the brevity
of this text. Let us note that in this text we updated some parts of above
mentioned paper [13]. In particular, we use some facts proved in the paper
by H. Lou [21] which was published after [13]. Thanks to the results from
[21] we could simplify some technically complicated assumptions from [13].

In the past few years, nonlinear eigenvalue problems for degenerate or
singular elliptic boundary value problems have attracted considerable atten-
tion. Related to them is the following problem for the Dirichlet p-Laplacian
Δp in a bounded smooth domain Ω ⊂ RN (N ≥ 1):

−Δpu = λ|u|p−2u+ f(x) in Ω,

u = 0 on ∂Ω.
(1.1)
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32 PAVEL DRÁBEK

Here, Δpu
def
= div(|∇u|p−2∇u), where p ∈ (1,∞) is a fixed number, f ∈

L∞(Ω) is a given function, and λ ∈ R stands for a spectral parameter. One
looks for a weak solution u : Ω → R to problem (1.1) in the Sobolev space

W 1,p
0 (Ω).
In this lecture we focus on the solvability of problem (1.1) for parameter

values λ near λ1, where λ1 stands for the first (smallest) eigenvalue of the
positive Dirichlet p-Laplacian−Δp in Ω. If λ < λ1, existence can be obtained
by a standard minimization argument applied to the energy functional

Jλ(u)
def
=

1

p

∫

Ω

|∇u|p dx− λ

p

∫

Ω

|u|p dx−
∫

Ω

fudx (1.2)

on W 1,p
0 (Ω). Unfortunately, for λ ≥ λ1, this functional is no longer co-

ercive, unless an additional hypothesis is imposed on the function f (see
e.g. Drábek [12] and Takáč [23]). For λ ≤ 0, the strict convexity of Jλ

guarantees uniqueness. In contrast, for 0 < λ < λ1, multiple solutions
(in space dimension one) have been constructed in del Pino, Elgueta
and Manásevich [8] (for 2 < p < ∞) and Fleckinger et al. [16] (for
1 < p < 2). However, if f ≥ 0 in Ω, uniqueness still holds for every λ < λ1

(D́ıaz and Saa [9]).
Unlike in [12], [14], [23], [24], where mostly variational and degree-theo-

retical arguments are used, in the work reported here we make extensive
use of topological methods with bifurcations from infinity based on general
facts from [11, Chapt. 5]. What is essentially needed to treat the general
case N ≥ 1 are (rather precise) asymptotic estimates of large solutions to
problem (1.1) as λ→ λ1 developed in [23], [24].

We first motivate our results by considering the linear boundary value
problem

−Δu− λu = f in Ω,

u = 0 on ∂Ω,
(1.3)

which corresponds to p = 2 in (1.1). Let f ∈ L∞(Ω) be given, f 	≡ 0. Then

the set of all pairs (λ, u) ∈ (−∞, λ2) × W 1,2
0 (Ω) that satisfy (1.3) can be

interpreted by means of a bifurcation diagram in R×W 1,2
0 (Ω). Namely, let us

write u = cϕ1+u� with
∫
Ω
u�ϕ1 dx = 0. As usual, ϕ1 is the eigenfunction of

the negative Dirichlet Laplacian −Δ associated with the (simple) eigenvalue
λ1 that is normalized by ϕ1 > 0 in Ω and

∫
Ω
ϕ2
1 dx = 1, and λ2 stands for

the second eigenvalue of −Δ. Then problem (1.3) is equivalent to

−Δu� − λu� + (λ1 − λ)cϕ1 = f� + aϕ1 in Ω,

u� = 0 on ∂Ω,
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QUASILINEAR ELLIPTIC PDE’S II 33

where
∫
Ω
f�ϕ1 dx = 0 and a =

∫
Ω
fϕ1 dx. Clearly, (λ1−λ)c = a. The linear

Fredholm alternative implies that the problem

−Δu� − λu� = f� in Ω,

u� = 0 on ∂Ω,

has a unique solution u� ∈ W 1,2
0 (Ω) with

∫
Ω
u�ϕ1 dx = 0. We have the

following two different cases:

(i) If
∫
Ω
fϕ1 dx = 0 then

(a) for any λ ∈ (−∞, λ1)∪(λ1, λ2), problem (1.3) has a unique solution
uλ = u�;

(b) for λ = λ1, all solutions of problem (1.3) can be written in the form
uλ1

= cϕ1 + u� with c ∈ R arbitrary.

(ii) If
∫
Ω
fϕ1 dx 	= 0 then

(a) there is no solution of (1.3) for λ = λ1;

(b) for any λ ∈ (−∞, λ1) ∪ (λ1, λ2) there is a unique solution of (1.3)
expressed by uλ = cϕ1 + u�, where

c = (λ1 − λ)−1

∫

Ω

fϕ1 dx.

The solution pairs (λ, u) ∈ R×W 1,2
0 (Ω) of (1.3) can thus be sketched in

the bifurcation diagrams indicated in Figure 1.

c

λ1 λ2 λ

∫
Ω
fϕ1 dx < 0

c

λ1 λ2 λ

∫
Ω
fϕ1 dx = 0

c

λ1

λ2

λ

∫
Ω
fϕ1 dx > 0

Figure 1: Bifurcations from infinity of solutions to (1.3), c
def
=

∫
Ω
uϕ1 dx.

Motivated by this picture of the solution set of (1.3), we have decided to
study the nonlinear problem (1.1) for p 	= 2 and to investigate the solution

pairs (λ, u) ∈ R×W 1,p
0 (Ω) for λ near λ1. Again, ϕ1 is the eigenfunction of the
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34 PAVEL DRÁBEK

p-Laplacian associated with λ1 and normalized by ϕ1 > 0 and
∫
Ω
ϕp
1 dx = 1

(cf. (2.1) below). Notice that a = (
∫
Ω
ϕ2
1 dx)

−1
∫
Ω
fϕ1 dx.

c

λ

1 < p < 2

c

λ

p > 2

Figure 2: A priori bounds and bifurcations from infinity of solutions
to (1.1) for p > 1, p 	= 2 and a = 0. There is no solution

in the shaded regions (owing to a priori bounds).

c

λ1 λ

a > 0, |a| � 1
1 < p

c

λ1

λ

a > 0, |a| � 1
1 < p < 2

c

λ1

λ

a > 0, |a| � 1
p > 2

c

λ1

λ

a < 0, |a| � 1
1 < p

c

λ1

λ

a < 0, |a| � 1
1 < p < 2

c

λ1

λ

a < 0, |a| � 1
p > 2

Figure 3: A priori bounds and bifurcations from infinity of solutions
to (1.1) for a 	= 0, 1 < p < 2 and/or p > 2.
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QUASILINEAR ELLIPTIC PDE’S II 35

The main results concerning the asymptotic behavior of the solution set
to (1.1) as λ → λ1 are sketched in Figures 2 and 3. We assume that f� ∈
L∞(Ω) is a given function satisfying

∫
Ω
f�ϕ1 dx = 0 and f� 	≡ 0. In (1.1)

we write f = aϕ1+f�, a ∈ R, and split the solution as u = cϕ1+u�. Note,
that there are no solutions in the shaded regions (we have a priori bounds)
while there may be many other solutions in the nonshaded regions.

We emphasize that Figures 2 and 3 depict the situation for |λ− λ1| � 1
and |

∫
Ω
fϕ1 dx| � 1. Precise statements of these asymptotic results can

be found in Section 5. Let us mention only some of their important conse-
quences. Although a number of these results have already been known, our
approach provides new proofs. Below we list them briefly.

In order to formulate our existence and multiplicity results, we rewrite
problem (1.1) as follows, with f = f� + aϕ1:

−Δpu− λ|u|p−2u = f� + aϕ1 in Ω,

u = 0 on ∂Ω.
(1.4)

Here, f� ∈ L∞(Ω) is a given function, with
∫
Ω
f�ϕ1 dx = 0 and f� 	≡ 0,

and λ, a ∈ R are real parameters.
We have the following existence and multiplicity results:

(E1) For λ = λ1, a = 0, problem (1.4) has at least one solution; all possible
solutions of (1.4) are a priori bounded in C1,β(Ω), 0 < β < 1, by a
constant which depends on f�.

(E2) There exist a0 = a0(f
�) > 0 and δ = δ(f�) > 0 such that

• if either λ ∈ (λ1 − δ, λ1) and a ≥ a0, or else λ ∈ (λ1, λ1 + δ) and
a ≤ −a0, then problem (1.4) can have only positive solutions;

• if either λ ∈ (λ1 − δ, λ1) and a ≤ −a0, or else λ ∈ (λ1, λ1 + δ) and
a ≥ a0, then problem (1.4) can have only negative solutions.

(M1) There exists η = η(f�) > 0 such that for a = 0 problem (1.4) has at
least three distinct solutions (among them at least one positive and
one negative) provided either 1 < p < 2 and λ ∈ (λ1 − η, λ1), or p > 2
and λ ∈ (λ1, λ1 + η).

(M2) There exists ε > 0 with the following properties:

• for every ε′ ∈ (0, ε), there is η = η(f�, ε, ε′) > 0 such that ε′ < |a| <
ε and λ ∈ (λ1− η, λ1)∪ (λ1, λ1 + η) imply that problem (1.4) has at
least three distinct solutions, of which at least one is positive and at
least one is negative;

• λ = λ1 and 0 < |a| < ε imply that problem (1.4) has at least two
distinct solutions, of which at least one is negative if (p − 2)a < 0,
and at least one is positive if (p− 2)a > 0.
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36 PAVEL DRÁBEK

2. Preliminaries

We will write 〈 · , · 〉 for the inner product and | · | for the induced norm in the
Euclidean space RN . We reserve the dot “ · ” for stressing multiplication in
complicated expressions. The closure, interior and boundary of a set S ⊂ RN

are denoted by S, int(S) and ∂S, respectively, and the characteristic function

of S by χS : Ω → {0, 1}. We write meas(S)
def
=

∫
RN χS(x) dx if S ⊂ RN is

Lebesgue measurable.
All Banach and Hilbert spaces used in this text are real. We work with

the standard inner product in L2(Ω) defined by (u, v)L2(Ω)
def
=

∫
Ω
uv dx for

u, v ∈ L2(Ω). The orthogonal complement in L2(Ω) of a set M ⊂ L2(Ω) is

denoted by M⊥,L2

,

M⊥,L2 def
= {u ∈ L2(Ω) : (u, v)L2(Ω) = 0 for all v ∈M}.

The inner product ( · , · )L2(Ω) in L2(Ω) induces a duality between the Lebes-

gue spaces Lp(Ω) and Lp′(Ω), where 1 ≤ p, p′ ≤ ∞ with 1
p + 1

p′ = 1, and

between the Sobolev space W 1,p
0 (Ω) and its dual W−1,p′(Ω), as well. We

keep the same notation also for the duality between the Cartesian products
[Lp(Ω)]N and [Lp′(Ω)]N . Similarly, if X is a Banach space that is continu-
ously and densely embedded in L2(Ω), we denote by X ′ its dual space, so
that X ↪→ L2(Ω) ↪→ X ′.

For simplicity we assume that Ω ⊂ RN is a bounded domain with C2-
boundary.

The variational formula

λ1 = inf
{∫

Ω

|∇u|p dx : u ∈W 1,p
0 (Ω) with

∫

Ω

|u|p dx = 1
}

gives the first (smallest) eigenvalue of the positive Dirichlet p-Laplacian for
1 < p <∞, that is,

−Δpϕ1 = λ1|ϕ1|p−2ϕ1 in Ω,

ϕ1 = 0 on ∂Ω,
(2.1)

holds with a nontrivial eigenfunction ϕ1 ∈W 1,p
0 (Ω). The first eigenvalue λ1

is simple and the eigenfunction ϕ1 associated with λ1 can be normalized by
ϕ1 > 0 in Ω and ‖ϕ1‖Lp(Ω) = 1, by a result due to Anane [2, Théorème 1,
p. 727] and later generalized in Lindqvist [20, Theorem 1.3, p. 157]. We
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QUASILINEAR ELLIPTIC PDE’S II 37

have ϕ1 ∈ L∞(Ω) by another result of Anane [3, Théorème A.1, p. 96].
Consequently, recalling the smoothness of ∂Ω, we get even ϕ1 ∈ C1,β(Ω) for
some β ∈ (0, 1), by a regularity result which is due to DiBenedetto [10,
Theorem 2, p. 829] and Tolksdorf [27, Theorem 1, p. 127] (interior reg-
ularity, shown independently), and to Lieberman [19, Theorem 1, p. 1203]
(regularity near the boundary). The constant β depends solely on N and
p. We keep the meaning of the constant β throughout the entire text and
denote by β′ an arbitrary, but fixed number such that 0 < β′ < β < 1.
Finally, the Hopf maximum principle [25, Prop. 3.2.1 and 3.2.2, p. 801] or
[28, Theorem 5, p. 200] can be applied to obtain

ϕ1 > 0 in Ω and
∂ϕ1

∂ν
< 0 on ∂Ω. (2.2)

As usual, ∂/∂ν denotes the outer normal derivative on ∂Ω. We set

U
def
= {x ∈ Ω : ∇ϕ1(x) 	= 0} and U ′

def
= Ω \ U = {x ∈ Ω : ∇ϕ1(x) = 0},

and observe that U ′ is a compact subset of Ω, by (2.2). Moreover, it follows
from H. Lou [21] that measU ′ = 0.

Often, a function u ∈ L1(Ω) will be decomposed as the orthogonal sum

u = cϕ1 + u�, where c = ‖ϕ1‖−2
L2(Ω)(u, ϕ1)L2(Ω) and (u�, ϕ1)L2(Ω) = 0.

Given a set M⊂ L1(Ω), we write

M� def
=

{
u� : u = cϕ1 + u� ∈M for some c ∈ R and (u�, ϕ1)L2(Ω) = 0

}
.

In particular, if M is a linear subspace of L1(Ω) with ϕ1 ∈M, then we have

M� = {u ∈M : (u, ϕ1)L2(Ω) = 0}.

Throughout the entire article we often need to compare weak solutions ui

(i = 1, 2) of two different boundary value problems of the weak form

∫

Ω

|∇ui|p−2〈∇ui,∇φ〉dx− λ

∫

Ω

|ui|p−2uiφdx =

∫

Ω

fiφdx

for all φ ∈W 1,p
0 (Ω) or for all φ in some similar test space, where fi ∈ L∞(Ω)

for i = 1, 2. A standard way of doing this is to subtract the two equations
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38 PAVEL DRÁBEK

from one another and then use the integral form of the first order Taylor
formula for the terms

|∇u1|p−2∇u1 − |∇u2|p−2∇u2 and |u1|p−2u1 − |u2|p−2u2.

This procedure yields

∫

Ω

〈[∫ 1

0

A
(
(1− s)∇u1 + s∇u2

)
ds
]
(∇u1 −∇u2),∇φ

〉
dx

− (p− 1)λ

∫

Ω

[∫ 1

0

|(1− s)u1 + su2|p−2 ds
]
(u1 − u2)φdx

=

∫

Ω

(f1 − f2)φdx,

where we have introduced the abbreviation

A(a)
def
= |a|p−2

(
I+ (p− 2)

a⊗ a

|a|2
)

for a ∈ RN , a 	= 0 ∈ RN . (2.3)

If 2 < p < ∞, we also set A(0)
def
= 0 ∈ RN×N . In fact, this will turn out

to be a useful convention also for 1 < p < 2. For a 	= 0, A(a) is a positive
definite, symmetric matrix. The “elliptic” degeneracy of the matrix A(a) is
expressed by the inequalities

min{1, p− 1} ≤ 〈A(a)v,v〉
|a|p−2|v|2 ≤ max{1, p− 1} for all a,v ∈ RN \ {0}.

In what follows we frequently use the notation Aϕ1
= A(∇ϕ1).

Now we need to distinguish between the cases p > 2 and 1 < p < 2, the
former one being somewhat easier.

2.1. The degenerate case 2 < p < ∞. We introduce a new norm on
W 1,p

0 (Ω) by

‖v‖Dϕ1

def
=

(∫

Ω

|∇ϕ1|p−2|∇v|2 dx
)1/2

for v ∈W 1,p
0 (Ω), (2.4)

and denote by Dϕ1
the completion of W 1,p

0 (Ω) with respect to this norm.
The Hilbert space Dϕ1

is compactly embedded in the Lebesgue space L2(Ω);
see [23, Lemma 4.2] and Lemma A.1 below. There, it is also shown that the

seminorm (2.4) is in fact a norm on W 1,p
0 (Ω).
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QUASILINEAR ELLIPTIC PDE’S II 39

The second order Taylor expansion for the energy functional

1

p

∫

Ω

|∇(ϕ1 + φ)|p dx− λ1

p

∫

Ω

|ϕ1 + φ|p dx

=

∫ 1

0

∫

Ω

|∇(ϕ1 + sφ)|p−2〈∇(ϕ1 + sφ),∇φ〉dxds

− λ1

∫ 1

0

∫

Ω

|ϕ1 + sφ|p−2(ϕ1 + sφ)φdxds

≡ Qφ(φ, φ),

associated with (1.1) where f ≡ 0, computed near ϕ1 and in an arbitrary

direction φ ∈ W 1,p
0 (Ω), is given by the symmetric bilinear form Qφ on the

Cartesian product [W 1,p
0 (Ω)]2 defined as follows, using the matrix abbrevia-

tion (2.3):

Qφ(v, w)
def
=

∫

Ω

〈[∫ 1

0

A(∇(ϕ1 + sφ))(1− s) ds
]
∇v,∇w

〉
dx

− λ1(p− 1)

∫

Ω

[∫ 1

0

|ϕ1 + sφ|p−2(1− s) ds
]
vw dx

for v, w ∈W 1,p
0 (Ω). In particular, one has

2 · Q0(v, v) =

∫

Ω

〈Aϕ1
∇v,∇v〉dx− λ1(p− 1)

∫

Ω

ϕp−2
1 v2 dx.

The quadratic form Q0 is positive semidefinite, i.e., Q0(v, v) ≥ 0 for all

v ∈ W 1,p
0 (Ω). Furthermore, Q0 is closable in L2(Ω), the domain of its

closure being equal to Dϕ1
. Finally, one has Q0(u, u) = 0 if and only if

u = κϕ1 for some κ ∈ R, due to measU ′ = 0 (see [23, Prop. 4.4] and [21]).

2.2. The singular case 1 < p < 2. The Hilbert space Dϕ1
, endowed with

the norm (2.4) for p > 2, needs to be redefined for 1 < p < 2 as follows. We

define v ∈ Dϕ1
if and only if v ∈W 1,2

0 (Ω) and

‖v‖Dϕ1

def
=

(∫

U

|∇ϕ1|p−2|∇v|2 dx
)1/2

<∞. (2.5)

Consequently, Dϕ1
endowed with the norm ‖·‖Dϕ1

is continuously embedded

into W 1,2
0 (Ω).
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40 PAVEL DRÁBEK

A good way of understanding the definition of Dϕ1
is to first identify

W 1,2
0 (Ω) with a closed linear subspace of the Cartesian product [L2(Ω)]N+1

by means of the isometric isomorphism v �→ (v,∇v), and then define v ∈ Dϕ1

by requiring ∇v(x) = 0 for x ∈ U ′, together with (2.5) in U = Ω \ U ′.
It follows from measU

′
= 0 that Dϕ1

is dense in L2(Ω) (see [23]).

Let us define another norm on W 1,2
0 (Ω) by

‖v‖Hϕ1

def
=

(∫

Ω

ϕp−2
1 v2 dx

)1/2

for v ∈W 1,2
0 (Ω),

and denote by Hϕ1
the completion of W 1,2

0 (Ω) with respect to this norm.

The Sobolev space W 1,2
0 (Ω) is compactly embedded in the Hilbert space

Hϕ1
, by Hardy’s inequality; see [23, Lemma 8.2] and Lemma A.2 below.

Notice that Hϕ1
= L2(Ω; d(x)p−2 dx) both, algebraically and topologically,

where the function

d(x)
def
= dist(x, ∂Ω) = inf

x0∈∂Ω
|x− x0|, x ∈ Ω,

denotes the distance from x to ∂Ω. It is easy to see that

H′ϕ1
= L2(Ω; d(x)2−p dx)

is the dual space of Hϕ1
when endowed with the dual norm

‖w‖H′ϕ1

def
=

(∫

Ω

ϕ2−p
1 w2 dx

)1/2

for w ∈ L2(Ω; d(x)2−p dx).

3. A global bifurcation result

Under a solution of (1.1) we understand a pair (λ, u) of λ ∈ R and u ∈
W 1,p

0 (Ω) satisfying the integral equality

∫

Ω

|∇u|p−2〈∇u,∇φ〉dx− λ

∫

Ω

|u|p−2uφ dx =

∫

Ω

fφdx (3.1)

for every φ ∈W 1,p
0 (Ω).

LetX = W 1,p
0 (Ω) and letX ′ stand for its dual space, i.e.,X ′= W−1,p′(Ω).

Then (3.1) is equivalent to the abstract operator equation

I(u)− λS(u) = F, (3.2)
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QUASILINEAR ELLIPTIC PDE’S II 41

where I,S : X → X ′ and F ∈ X ′ are defined as follows, for any u, φ ∈ X:

(I(u), φ)X =

∫

Ω

|∇u|p−2〈∇u,∇φ〉dx,

(S(u), φ)X =

∫

Ω

|u|p−2uφ dx,

(F, φ)X =

∫

Ω

fφdx.

Here, ( · , · )X denotes the duality pairing between X and X ′.
It is proved in [11, Chapter 5] that the operator I −λS satisfies condition

α(X) from [22] (which is nothing else but condition (S+) from [6]) and so
its (topological) degree can be defined.

Definition 3.1. Let μ0 ∈ R. We say that (μ0,∞) is an asymptotic bifur-
cation point for (3.2) if there exists a sequence of pairs {(μn, un)}∞n=1 ⊂
R × X such that (3.2) holds with (λ, u) = (μn, un), n = 1, 2, 3, . . . , and
(μn, ‖un‖X)→ (μ0,∞).

For u ∈ X, u 	= 0, set v = u/‖u‖2X . Then (3.2) is equivalent to

I(v)− λS(v) = ‖v‖2(p−1)
X F,

and so the term

G(λ, v) def
=

{
‖v‖2(p−1)

X F if v 	= 0,

0 if v = 0

for λ ∈ R, represents a compact perturbation “of higher order” in the variable
v in the equation

I(v)− λS(v) = G(λ, v). (3.3)

It follows immediately from this transformation that the pair (μ0,∞) is
an asymptotic bifurcation point for (3.2) if and only if (μ0, 0) is a bifurcation
point (from the set of trivial solutions) for (3.3). For C ⊂ R ×X we define

(the set) C̃ to be the closure in R×X of the set of all pairs (μ, v) ∈ R×X
such that v 	= 0 and (μ, v/‖v‖X2) ∈ C.

In [11, Theorem 14.18], it was proved that (λ1, 0) is a bifurcation point
for (3.3). Let us reformulate this result in terms of problem (3.2).
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Proposition 3.2. Let F ∈ X ′, F 	= 0. Then the pair (λ1,∞) is an asymp-
totic bifurcation point for (3.2). Moreover, there exists a maximal (in the

ordering by set inclusion) closed set C ⊂ R×X, such that C̃ is connected in
R×X and the following properties hold:

(i) there exists a sequence {(μn, un)}∞n=1 ⊂ C such that (μn, ‖un‖X) →
(λ1,∞);

(ii) either C is unbounded in the λ-direction, or else there exists an
eigenvalue λ0 of −Δp such that λ0 > λ1 and there is a sequence
{(μn, un)}∞m=1 ⊂ C satisfying (μn, ‖un‖X)→ (λ0,∞).

Remark 3.3. The assumption F 	= 0 (which corresponds to f 	≡ 0 in (1.1))
implies that (3.2) cannot have the trivial solution u = 0. Consequently, C
contains no sequence of pairs (μk, uk) with (μk, ‖uk‖X)→ (μ̂, 0). Hence, the
statement of Proposition 3.2 follows directly from [11, Theorem 14.18] using
the transformation u �→ v = u/‖u‖2X .

4. A priori asymptotic estimates

In this section we will establish an asymptotic estimate that plays the key
role in the study of the structure of the solution set to (1.1). We assume
1 < p < ∞, p 	= 2, throughout the entire section. From now on, we denote
by λ2 (λ2 > λ1) the second eigenvalue of the positive Dirichlet p-Laplacian
−Δp. We use only the well-known fact from [4] that there is no eigenvalue
of −Δp in the open interval (λ1, λ2), by a variational characterization of λ2.
The following theorem is the key to the results of this lecture. We skip the
proofs and indicate only the main steps. The details can be found in the
paper [13].

Theorem 4.1. Let {μn}∞n=1 ⊂ R, {fn}∞n=1 ⊂ L∞(Ω), {un}∞n=1 ⊂ W 1,p
0 (Ω)

be sequences, and let δ > 0 be such that

(i) λ1 + μn < λ2 − δ for all n ∈ N;
(ii) fn

∗
⇀ f weakly-star in L∞(Ω);

(iii) ‖un‖W 1,p
0 (Ω) →∞ as n→∞;

(iv) in addition, assume that for all n ∈ N and φ ∈W 1,p
0 (Ω),

∫

Ω

|∇un|p−2〈∇un,∇φ〉dx = (λ1 +μn)

∫

Ω

|un|p−2unφdx+

∫

Ω

fnφdx. (4.1)

Then μn → 0 and, writing un = t−1
n (ϕ1 + v�n ) with tn ∈ R, tn 	= 0, and

v�n ∈W 1,p
0 (Ω)�, we have tn → 0, |tn|−ptnv

�
n → V � strongly in Dϕ1

if p > 2
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and in W 1,2
0 (Ω) if 1 < p < 2, and

μn = −|tn|p−2tn

∫

Ω

fnϕ1 dx+ (p− 2)|tn|2(p−1)Q0(V
�, V �)

+ (p− 1)|tn|2(p−1)
(∫

Ω

fϕ1 dx
)(∫

Ω

ϕp−1
1 V � dx

)
+ o(|tn|2(p−1)).

(4.2)

In particular, if
∫
Ω
fnϕ1 dx = 0 for all n ∈ N, then

μn = (p− 2)|tn|2(p−1)Q0(V
�, V �) + o(|tn|2(p−1)).

Moreover, V � ∈ Dϕ1
∩ {ϕ1}⊥,L2

is the (unique) solution to

2 · Q0(V
�, φ) =

∫

Ω

f†φdx for all φ ∈ Dϕ1
, (4.3)

where we have denoted

2 · Q0(V
�, φ) =

∫

Ω

〈Aϕ1
∇V �,∇φ〉dx− λ1(p− 1)

∫

Ω

ϕp−2
1 V �φdx

and f† = f − (
∫
Ω
fϕ1 dx)ϕ

p−1
1 .

Remark 4.2. The linear equation (4.3) represents the weak form of
the “limiting” Dirichlet boundary value problem for the limit function
|tn|−ptnv

�
n → V � in the approximation scheme with un = t−1

n (ϕ1 + v�n ).
This is a resonant problem to which a standard version of the Fredholm
alternative for a selfadjoint linear operator in a Hilbert space applies. More
precisely, given a function f ∈ L2(Ω), a weak solution V ∈ Dϕ1

to the
equation

2 · Q0(V, φ) =

∫

Ω

fφdx for all φ ∈ Dϕ1
, (4.4)

exists in Dϕ1
if and only if

∫
Ω
fϕ1 dx = 0. Such a solution is always unique

under the orthogonality condition
∫
Ω
V ϕ1 dx = 0.

Consequently, given f� ∈ {ϕ1}⊥,L2 ⊂ L2(Ω), we denote by

V � ≡ V �(f�) ∈ Dϕ1
∩ {ϕ1}⊥,L2

the unique weak solution to problem (4.4) with f� in place of f . It is easy

to see that f� �→ V � : {ϕ1}⊥,L2 → Dϕ1
is a compact linear mapping.

Clearly, this mapping is linear and bounded. To show that it is compact,
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let {fn}∞n=1 ⊂ {ϕ1}⊥,L2

be any weakly convergent sequence, fn ⇀ f in
L2(Ω) as n → ∞. Hence, {V �(fn)}∞n=1 is a weakly convergent sequence,
V �(fn) ⇀ V �(f) in Dϕ1

as n → ∞. The embedding Dϕ1
↪→ L2(Ω) being

compact, we have also V �(fn)→ V �(f) strongly in L2(Ω), and
∫

Ω

fnφdx −→
∫

Ω

fφdx

uniformly for φ ∈ Dϕ1
with ‖φ‖Dϕ1

≤ 1. Inserting these results into equa-
tion (4.4) we deduce

∫

Ω

〈Aϕ1
∇V �(fn),∇φ〉dx −→

∫

Ω

〈Aϕ1
∇V �(f),∇φ〉dx

uniformly for φ ∈ Dϕ1
with ‖φ‖Dϕ1

≤ 1. We have shown V �(fn)→ V �(f)
strongly in Dϕ1

, and thus the desired compactness.

Main steps of the proof of Theorem 4.1.

Step 1. Hypothesis (iii) is equivalent to (iii’): ‖un‖L∞(Ω) →∞ as n→∞.

Step 2. We prove that μn is bounded also below.

Step 3. We prove that μn → 0.

Step 4. Boundedness of v�n /|tn|p−1 in L2(Ω) if p > 2, in Hϕ1
if 1 < p < 2,

and of μn/|tn|p−1 in R.
Step 5. We prove that v�n /(|tn|p−2tn)→ V � strongly in Dϕ1

if p > 2 and in

W 1,2
0 (Ω) if 1 < p < 2.

Step 6. First order asymptotic estimate for μn.

Step 7. Second order asymptotic estimate for μn. �

5. Refined global bifurcation results

In this section we make use of the asymptotic estimate from Section 4 in
order to extend the results obtained in Section 3. We use the notation
introduced in Section 3. The following nonexistence result is a consequence
of Theorem 4.1.

Proposition 5.1. Let f ∈ L∞(Ω), f 	≡ 0. Then there exists a constant

R > 0 such that every weak solution u ∈W 1,p
0 (Ω) of the problem

−Δpu− λ1|u|p−2u = f(x) in Ω,

u = 0 on ∂Ω
(5.1)

satisfies the a priori bound ‖u‖W 1,p
0 (Ω) ≤ R.
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Proof. On the contrary, assume that, for each n ∈ N, there exists un ∈
W 1,p

0 (Ω) such that ‖un‖W 1,p
0 (Ω) ≥ n and un verifies (5.1). Then also

∫

Ω

|∇un|p dx− λ1

∫

Ω

|un|p dx =

∫

Ω

fun dx.

Denoting vn = un/‖un‖W 1,p
0 (Ω), we get ‖vn‖W 1,p

0 (Ω) = 1 and
∫

Ω

|∇vn|p dx− λ1

∫

Ω

|vn|p dx =
1

‖un‖p−1

W 1,p
0 (Ω)

∫

Ω

fvn dx. (5.2)

Passing to a subsequence if necessary, we may assume that vn ⇀ v0 weakly
in W 1,p

0 (Ω) and vn → v0 strongly in Lp(Ω). Then it follows from (5.2) and
‖un‖W 1,p

0 (Ω) →∞ that

1 = ‖vn‖pW 1,p
0 (Ω)

→ λ1

∫

Ω

|v0|p dx (5.3)

and ∫

Ω

|∇v0|p dx− λ1

∫

Ω

|v0|p dx ≤ 0. (5.4)

The variational characterization of λ1, (5.3) and (5.4) imply that v0 = kϕ1

for some k ∈ R\{0}. Assume k > 0 (the case k < 0 is analogous). We apply
Theorem 4.1 with fn = f and μn = 0 for every n ∈ N large enough; hence
un = t−1

n (ϕ1 + v�n ), tn > 0. If
∫
Ω
fϕ1 dx = 0 then

0 = (p− 2)t2(p−1)
n · Q0(V

�, V �) + o(t2(p−1
n ),

which forces Q0(V
�, V �) = 0, a contradiction to Q0(V

�, V �) > 0. If∫
Ω
fϕ1 dx = a 	= 0 then 0 = −atp−1

n + o(tp−1
n ), a contradiction again. �

Recall that X and X ′ together with I(u), S(u) and F have been specified
in Section 3.

Theorem 5.2. Let F ∈ X ′, F 	= 0. Then there is a pair of maximal closed

sets C+, C− ⊂ R×X of solutions of (3.2) such that both sets C̃+ and C̃− are

connected in R × X, where C̃± are the closures in R × X of the respective
sets of all pairs (μ, v) ∈ R ×X such that v 	= 0 and (μ, v/‖v‖2X) ∈ C±, and
the following properties hold:

(a) there exist sequences of pairs (μn, un) ∈ C+ and (μ′n, u
′
n) ∈ C− such

that μn → λ1, μ
′
n → λ1, ‖un‖X → ∞ and ‖u′n‖X → ∞, together with

un/‖un‖X → ϕ1/‖ϕ1‖X and u′n/‖u′n‖X → −ϕ1/‖ϕ1‖X strongly in X;

(b) either both C+ and C− are unbounded in the λ-direction, or else C̃+∩C̃−
contains a point other than {(λ1, 0)}.
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Proof. After the transformation vn = un/‖un‖2X , the statement of our
Theorem 5.2 follows directly from Proposition 5.1 and [11, Theorem 14.20].

�
Remark 5.3. Let us point out that it follows from Theorem 5.2 com-
bined with regularity results [19] that the convergence above un/‖un‖X →
ϕ1/‖ϕ1‖X , and u′n/‖u′n‖X → −ϕ1/‖ϕ1‖X as well, occurs strongly not only

in X = W 1,p
0 (Ω) but even in C1,β′(Ω). Thus, ‖un‖X → ∞ is equivalent to

‖un‖L∞(Ω) →∞, and also to ‖un‖C1,β′ (Ω) →∞, for (λn, un) ∈ C+ ∪ C−.
Remark 5.4. Our aim is to study the local behaviour of the bifurcation
branches C± near λ1. For this reason we restrict our attention to λ ∈
(−∞,Λ) with some Λ ∈ (λ1, λ2). Recall that λ2 is the second eigenvalue
of the negative Dirichlet p-Laplacian −Δp (cf. Theorem 4.1).

5.1. Case
∫
Ω
fϕ1 dx 	= 0. We will now establish a priori bounds that

allow us to detect whether λ belongs to the left or the right neighborhood
of λ1 provided (λ, u) ∈ C± and the norm ‖u‖L∞(Ω) is large enough.

Theorem 5.5. Let Λ ∈ (λ1, λ2). For every f ∈ L∞(Ω) with
∫
Ω
fϕ1 dx 	= 0,

there exists a constant M > 0 such that the following statements and impli-
cations hold.

(i) If
∫
Ω
fϕ1 dx < 0 then every solution (λ, u) to (1.1) satisfies

(a) u(x̂) < 0 for some x̂ ∈ Ω and λ1 ≤ λ ≤ Λ =⇒ ‖u‖L∞(Ω) ≤M ;

(b) u(x̂) > 0 for some x̂ ∈ Ω and λ ≤ λ1 =⇒ ‖u‖L∞(Ω) ≤M .

(ii) If
∫
Ω
fϕ1 dx > 0 then every solution (λ, u) to (1.1) satisfies

(a) u(x̂) < 0 for some x̂ ∈ Ω and λ ≤ λ1 =⇒ ‖u‖L∞(Ω) ≤M ;

(b) u(x̂) > 0 for some x̂ ∈ Ω and λ1 ≤ λ ≤ Λ =⇒ ‖u‖L∞(Ω) ≤M .

Proof. Case (i) (a). Assume by contradiction that there exists f ∈ L∞(Ω),∫
Ω
fϕ1 dx < 0, such that for each n ∈ N there exist λ = λ1 + μn ≥ λ1 and

un ∈ W 1,p
0 (Ω) with un(x̂n) < 0 for some x̂n ∈ Ω, such that ‖un‖L∞(Ω) ≥ n

and (λ, un) is a solution of (4.1) with λ = λ1 + μn. Let us write un =
t−1
n (ϕ1 + v�n ) with some tn ∈ R \ {0}. Using the proof of Theorem 4.1,
Step 4, we have tn → 0 as n→∞. Moreover, if n ∈ N is large enough, then
also tn < 0, because un(x̂n) < 0 for some x̂n ∈ Ω. Then, by Theorem 4.1,
we find that μn → 0 and (4.2) yields

0 ≤ μn = −tn|tn|p−2

∫

Ω

fϕ1 dx+ o(tp−1
n )

for all n ∈ N large enough. Since
∫
Ω
fϕ1 dx < 0 and tn < 0, the last

inequality is absurd and (i) (a) holds.
Cases (i) (b), (ii) (a), (ii) (b) are proved analogously. �
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Corollary 5.6. Let Λ ∈ (λ1, λ2) and f ∈ L∞(Ω),
∫
Ω
fϕ1 dx 	= 0, be given.

Moreover, let C± be as in Theorem 5.2. Then there exists a constant M̂ ≥M
(M being the constant from Theorem 5.5) such that, for every u ∈W 1,p

0 (Ω)

with ‖u‖L∞(Ω) > M̂ and written as u = t−1(ϕ1 + v�), we have:

(i) (a)
∫
Ω
fϕ1 dx < 0, (λ, u) ∈ C−∩((−∞,Λ]×W 1,p

0 (Ω)) and t < 0 implies
u < 0 in Ω and λ < λ1.

(b)
∫
Ω
fϕ1 dx < 0, (λ, u) ∈ C+∩((−∞,Λ]×W 1,p

0 (Ω)) and t > 0 implies
u > 0 in Ω and λ > λ1.

(ii) (a)
∫
Ω
fϕ1 dx > 0, (λ, u) ∈ C−∩((−∞,Λ]×W 1,p

0 (Ω)) and t < 0 implies
u < 0 in Ω and λ > λ1.

(b)
∫
Ω
fϕ1 dx > 0, (λ, u) ∈ C+∩((−∞,Λ]×W 1,p

0 (Ω)) and t > 0 implies
u > 0 in Ω and λ < λ1.

Proof. Let us prove (i) (a), the other cases being similar. There is M̂ > 0

such that for (λ, u) ∈ C− ∩ ((−∞,Λ]×W 1,p
0 (Ω)) and t < 0 we have u < 0 in

Ω. This follows from Remark 5.3. Taking M̂ ≥ M (M from Theorem 5.5),
we must have λ < λ1 owing to Theorem 5.5, Case (i) (a). �

A sketch of the bifurcation diagram that corresponds to Corollary 5.6 is
depicted in Figure 3.

5.2. Case
∫
Ω
fϕ1 dx = 0. In this subsection we will distinguish between

the cases 1 < p < 2 and p > 2.

Theorem 5.7. Let Λ ∈ (λ1, λ2). For every f ∈ L∞(Ω),
∫
Ω
fϕ1 dx = 0,

f 	≡ 0, there exists a constant M > 0 such that every solution (λ, u) to (1.1)
satisfies:

(i) if 1 < p < 2, then λ1 ≤ λ ≤ Λ implies ‖u‖L∞(Ω) ≤M ;

(ii) if p > 2, then λ ≤ λ1 implies ‖u‖L∞(Ω) ≤M .

Proof. Part (i). Assume on the contrary that there exists f ∈ L∞(Ω),∫
Ω
fϕ1 dx = 0, f 	≡ 0, such that for any n ∈ N there exist λn ≥ λ1 and

un ∈ W 1,p
0 (Ω), ‖un‖W 1,p

0 (Ω) ≥ n, such that (λn, un) is a solution to (4.1).

Let us write λn = λ1 + μn and un = t−1
n (ϕ1 + v�n ) with tn → 0. Then, by

Theorem 4.1, we find that μn → 0, and so (4.2) yields

0 ≤ μn = (p− 2)|tn|2(p−1)Q0(V
�, V �) + o(|tn|2(p−1))

for all n ∈ N. Since 1 < p < 2 and Q0(V
�, V �) > 0 for all f� ∈ L∞(Ω)

with
∫
Ω
f�ϕ1 dx = 0 and f� 	≡ 0 (see Remark 4.2), the last inequality is

absurd. Hence, Part (i) is proved. Part (ii) is proved analogously. �
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Corollary 5.8. Let Λ ∈ (λ1, λ2) and f ∈ L∞(Ω),
∫
Ω
fϕ1 dx = 0, f 	≡ 0, be

given. Let C± be as in Theorem 5.2. Then there exists a constant M̂ ≥ M
(M being the constant from Theorem 5.5) such that, for every u ∈W 1,p

0 (Ω)

with ‖u‖L∞(Ω) > M̂ and written as u = t−1(ϕ1 + v�), we have:

(i) 1 < p < 2, (λ, u) ∈ (C− ∪ C+) ∩ ((−∞,Λ]×W 1,p
0 (Ω)) and t > 0 (t < 0,

respectively) implies u > 0 (u < 0) in Ω and λ < λ1;

(ii) p > 2, (λ, u) ∈ (C− ∪ C+) ∩ ((−∞,Λ] ×W 1,p
0 (Ω)) and t > 0 (t < 0,

respectively) implies u > 0 (u < 0) in Ω and λ > λ1.

Proof. Let us prove Part (i), proof of Part (ii) being similar. There is

M̂ > 0 such that for (λ, u) ∈ (C− ∪ C+) ∩ ((−∞,Λ]×W 1,p
0 (Ω)), u does not

change sign in Ω (i.e., u is either positive or negative in Ω). This follows from

Remark 5.3. Taking M̂ ≥M (M being the constant from Theorem 5.7), we
must have λ > λ1 due to Theorem 5.7. Thus, Part (i) is proved. �

A sketch of the bifurcation diagram which corresponds to Corollary 5.8 is
depicted in Figure 2.

5.3. Case
∫
Ω
fϕ1 dx 	= 0 revisited. In this subsection we consider

perturbations f of functions f� ∈ L∞(Ω),
∫
Ω
f�ϕ1 dx = 0, of the form

f = f� + aϕ1 with a ∈ R small enough. Therefore, we need to distinguish
between the cases 1 < p < 2 and p > 2 again.

Theorem 5.9. Let f� ∈ L∞(Ω) be fixed, f� 	≡ 0 and
∫
Ω
f�ϕ1 dx = 0.

Given a ∈ R, let C±a denote continua of solutions (λ, u) ∈ R × X (in the
sense of Theorem 5.2) to

−Δpu− λ|u|p−2u = f� + aϕ1 in Ω,

u = 0 on ∂Ω.
(5.5)

Let every solution u of (5.5) be written in the form u = t−1(ϕ1+ v�), t ∈ R,
v� ∈ C1,β′(Ω). Then there exist ε > 0, a = a(f�, p) and a = a(f�, p), such
that a < 0 < a and for a ∈ (a, 0) ∪ (0, a) we have u > 0 in Ω if t ∈ (0, ε)
and u < 0 if t ∈ (−ε, 0). Furthermore,

(i) if 1 < p < 2 then

(a) for any a ∈ (a, 0) there exists t0 ∈ (0, ε) such that u = t−1
0 (ϕ1+v�)

and (λ, u) ∈ C+a imply λ < λ1;

(b) for any a∈ (0, a) there exists t0∈ (−ε, 0) such that u= t−1
0 (ϕ1+v�)

and (λ, u) ∈ C−a imply λ < λ1;
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(ii) if p > 2 then

(a) for any a∈ (a, 0) there exists t0∈ (−ε, 0) such that u= t−1
0 (ϕ1+v�)

and (λ, u) ∈ C−a imply λ > λ1;

(b) for any a ∈ (0, a) there exists t0 ∈ (0, ε) such that u = t−1
0 (ϕ1+v�)

and (λ, u) ∈ C+a imply λ > λ1.

Proof of Theorem 5.9. Let a ∈ J , where J is a bounded interval.
According to Step 4 of the proof of Theorem 4.1, there exists ε > 0 small
enough such that for any solution u = t−1(ϕ1 + v�) of (5.5) with t ∈ (0, ε)
we have ϕ1(x) + v�(x) > 0, x ∈ Ω, i.e., u > 0 in Ω. Analogously we prove
that u < 0 in Ω if t ∈ (−ε, 0). Fix such a number ε > 0.

Let us prove Case (ii) (b). The proofs of the remaining three cases are
analogous. We proceed via contradiction. Assume that there exist an > 0,
an → 0, and for any t ∈ (0, ε), u = t−1(ϕ1 + v�), (λ, u) ∈ C+an

, we have
λ ≤ λ1. Recall that the set C+an

is connected for any fixed n ∈ N. Hence,

taking n large enough, we can pick tn ∈ (0, ε), tn = a
1

3(p−1)
n , and λn = λ1+μn

with μn ≤ 0, such that un = t−1
n (ϕ1 + v�n ) > 0 in Ω and (λn, un) ∈ C+an

.

This choice guarantees that (4.1) holds with fn = f� + anϕ1
∗
⇀ f = f�

weakly-star in L∞(Ω). Applying Theorem 4.1 we obtain

μn = −tp−1
n an‖ϕ1‖2L2(Ω) + t2(p−1)

n (p− 2) · Q0(V
�, V �) + o(t2(p−1)

n ). (5.6)

It follows from our choice of tn that −tp−1
n an = −t4(p−1)

n , whence (5.6) is
equivalent to

μn = t2(p−1)
n (p− 2) · Q0(V

�, V �) + o(t2(p−1)
n ). (5.7)

This is a contradiction because μn ≤ 0 and the right-hand side of (5.7) is
positive for n large enough due to f� 	≡ 0. �

Corollary 5.10. Let f� ∈ L∞(Ω), C±a , ε, a, a and a be as in Theorem 5.9
above. Then

(i) there exists ta ∈ (0, ε) and u = t−1
a (ϕ1 + v�) > 0 in Ω such that

(λ1, u) ∈ C+
a ;

(ii) there exists ta ∈ (−ε, 0) and u = t−1
a (ϕ1 + v�) < 0 in Ω such that

(λ1, u) ∈ C−a .

Proof. The proof follows from Theorems 5.7 and 5.9 combined with the

fact that the sets C̃±a are connected for each a ∈ (a, 0) ∪ (0, a). �
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For a given a ∈ (a, 0)∪(0, a), let us denote t̂a = inf |ta|, where the infimum
is taken over all ta (0 < |ta| < ε) associated to a via Corollary 5.10.

Corollary 5.11. We have lima→0 t̂a = 0.

Proof. Let 1 < p < 2. Assume that there exist an < 0, an → 0 as n→∞,
and η > 0 such that t̂an

≥ η. Then we can find a sequence {tn}∞n=1 ⊂ R\{0}
such that t−1

n > (t̂an
)−1, {t−1

n }∞n=1 is bounded, un = t−1
n (ϕ1 + v�n ) > 0 in

Ω, (λn, un) ∈ C+ with λn > λ1, and ‖un‖W 1,p
0 (Ω) is bounded as well. At the

same time, {tn}∞n=1 can be chosen such that ‖un‖W 1,p
0 (Ω) ≥ M + 1, where

M is associated to f = f� via Theorem 5.7. Hence,

−Δpun − λn|un|p−2un = f� + anϕ1 in Ω,

un = 0 on ∂Ω.

Applying a standard compactness argument and passing to a suitable subse-
quence we obtain un → u0 strongly in W 1,p

0 (Ω), u0 > 0 in Ω, ‖u0‖W 1,p
0 (Ω) ≥

M + 1 > M , together with λn → λ, where λ1 ≤ λ ≤ Λ < λ2, and

−Δpu0 − λ|u0|p−2u0 = f� in Ω,

u0 = 0 on ∂Ω.

This fact contradicts Theorem 5.7. The case p > 2 is treated in a similar
way. �

1/t

1/ta4

1/ta3

1/ta2

1/ta1

λ1 λ

Figure 4: Illustration of Corollary 5.11 for 1 < p < 2. The dash-dotted
curves represent branches C± for a = 0. One can see how the trans-
critical bifurcation for a 	= 0 transforms to a subcritical one for a = 0.
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The statement of Corollary 5.11 is illustrated in Figure 4 (with an ↗ 0).
Furthermore, in Figure 5, we illustrate how the graphs depend on the value
of a in case 1 < p < 2.

c

λ

a� −1

c

λ

a < 0, |a| � 1

c

λ

a = 0

c

λ

0 < a, a� 1

c

λ

1� a

Figure 5: Dependence of a priori bounds and bifurcations
from infinity of solutions to (1.1) on a =

∫
Ω
fϕ1dx for 1 < p < 2.

There is no solution in shaded regions.

6. Main Results

In this section we will state some applications and consequences of the as-
ymptotic formulas derived in the previous section. We will assume that
f� ∈ L∞(Ω) is a given function which satisfies

∫
Ω
f�ϕ1 dx = 0, f� 	≡ 0. We

begin with the following existence and boundedness result.

Theorem 6.1. Problem (1.1) with λ = λ1 and f = f� has at least one

solution u ∈ C1,β′(Ω). Moreover, there exists a constant K = K(f�) > 0
such that any solution u to (1.1) satisfies ‖u‖C1,β′ (Ω) ≤ K.

Sketch of the proof. Let p > 2 (the case 1 < p < 2 is treated simi-
larly). Then it follows from a standard degree argument (see e.g. [17]) that

there exists a sequence of solutions (λn, un) ∈ R × W 1,p
0 (Ω) of (1.1) with

λn → λ1−. By Theorem 5.7 there exists a constant M > 0 such that
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‖un‖L∞(Ω) ≤ M . A regularity argument (up to the boundary, see [19]) im-
plies that ‖un‖C1,β(Ω) ≤ K with some β ∈ (0, 1). Now, using compactness of

the embedding of C1,β(Ω) into C1,β′(Ω), 0 < β′ < β, we can use a standard

limiting argument to prove the existence of the solution u ∈ C1,β′(Ω) of
(1.1). The a priori estimate ‖u‖C1,β′ (Ω) ≤ K follows from Proposition 5.1

and a regularity result [19]. �
Theorem 6.2. There exists δ = δ(f�, p) > 0 such that problem (1.1) with
f = f� has at least one positive solution and at least one negative solution
provided one of the following two alternatives occurs:

(i) 1 < p < 2 and λ ∈ [λ1 − δ, λ1);

(ii) p > 2 and λ ∈ (λ1, λ1 + δ].

This theorem is an immediate consequence of Theorem 5.2 and Corol-
lary 5.8.

Theorem 6.3. There exists a constant ε > 0 (small enough) with the fol-
lowing properties:

(i) for 1 < p < 2, problem (1.1) has

(a) at least one positive and at least one negative solution provided 0 <
|a| < ε and λ1 − δ < λ < λ1, where δ ≡ δ(ε) > 0 is a constant
(small enough);

(b) at least two distinct negative solutions provided ε′ < a < ε and
λ1 < λ < λ1 + δ, where ε′ ∈ (0, ε) is an arbitrary number and
δ ≡ δ(ε, ε′) > 0 is a constant (small enough);

(c) at least two distinct positive solutions provided −ε < a < −ε′ and
λ1 < λ < λ1 + δ, where ε′ ∈ (0, ε) is an arbitrary number and
δ ≡ δ(ε, ε′) > 0 is a constant (small enough);

(ii) for p > 2, problem (1.1) has

(a) at least one positive and at least one negative solution provided 0 <
|a| < ε and λ1 < λ < λ1 + δ, where δ ≡ δ(ε) > 0 is a constant
(small enough);

(b) at least two distinct positive solutions provided ε′ < a < ε and
λ1 − δ < λ < λ1, where ε′ ∈ (0, ε) is an arbitrary number and
δ ≡ δ(ε, ε′) > 0 is a constant (small enough);

(c) at least two distinct negative solutions provided −ε < a < −ε′ and
λ1 − δ < λ < λ1, where ε′ ∈ (0, ε) is an arbitrary number and
δ ≡ δ(ε, ε′) > 0 is a constant (small enough).

This theorem follows immediately from Corollary 5.6 and Theorem 5.9.

kniha_Institute_of_Mathematics_v60   60kniha_Institute_of_Mathematics_v60   60 7.9.2011   9:45:267.9.2011   9:45:26



QUASILINEAR ELLIPTIC PDE’S II 53

Remark 6.4. We would like to emphasize that the existence of multiple
solutions in all cases of Theorem 6.3 does not occur in the linear case p = 2,
where the uniqueness of the solution is guaranteed by the linear Fredholm
alternative.

In what follows we show that for |a| sufficiently large, the statements
of Theorem 6.3 are no longer valid. To this end we recall the following
nonexistence result.

Proposition 6.5. There exists a0 > 0 such that problem (1.1) with λ = λ1

and f = f� + aϕ1 has no solution whenever |a| ≥ a0.

Sketch of the proof. We argue by contradiction. Assume that there
is a sequence {an}∞n=1 ⊂ R, an → ∞, such that (1.1) with λ = λ1 and
fn = f�+ anϕ1 has a solution un. Dividing the equation in (1.1) by an and

setting vn
def
= a

−1/(p−1)
n un, we obtain

−Δpvn − λ1|vn|p−2vn = a−1
n fn + ϕ1 in Ω,

vn = 0 on ∂Ω.

From Theorem 4.1 with un = t−1
n (ϕ1 + v�n ) we infer that {t−1

n }∞n=1 has to
be bounded; otherwise we would have a contradiction with the asymptotic
estimate (4.1). Hence, vn is bounded in L∞(Ω). Therefore, combining the
compactness of Δ−1

p with a regularity result [19], we find that vn → v0
strongly in C1

0 (Ω), and v0 satisfies

−Δpv0 − λ1|v0|p−2v0 = ϕ1 in Ω,

v0 = 0 on ∂Ω.

But this contradicts a nonexistence result proved in [1] or [15]. �
Now we have the following counterpart of Theorem 6.3.

Theorem 6.6. Let f = f�+aϕ1 with |a| ≥ a0, where a0 > 0 is the number
from Proposition 6.5. Then there exists δ > 0 such that

(i) if a ≥ a0 then

(a) problem (1.1) has only positive solutions provided λ ∈ (λ1 − δ, λ1);

(b) problem (1.1) has only negative solutions provided λ ∈ (λ1, λ1 + δ);

(ii) if a ≤ −a0 then

(a) problem (1.1) has only negative solutions provided λ ∈ (λ1 − δ, λ1);

(b) problem (1.1) has only positive solutions provided λ∈(λ1, λ1+δ).
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Remark 6.7. Let us note that for λ < λ1, problem (1.1) has a solution by
coercivity of the functional (1.2), and for λ1 < λ < λ1 + δ, (1.1) is solvable
by a topological degree argument [11, Theorem 12.26].

Proof of Theorem 6.6. We prove Case (i) (a) only, the proofs of all
remaining cases being analogous. The nonexistence of a solution other than
a positive one is proved combining Theorems 4.1 and 5.5 with Proposition 6.5
as follows. Assume by contradiction that there is a sequence λn → λ1,
λn < λ1, such that problem (1.1) with λ = λn and f = f� + aϕ1 has a

solution un ∈W 1,p
0 (Ω) such that un(xn) ≤ 0 for some xn ∈ Ω. If ‖un‖L∞(Ω)

is unbounded, let us write un = t−1
n (ϕ1 + v�n ), where λn → λ1, λn < λ1,

implies tn → 0, tn > 0, and ‖v�n ‖C1
0 (Ω) → 0 as n → ∞. According to

Theorems 4.1 and 5.5 (Case (ii) (a)), this contradicts our assumption a ≥
a0 > 0. Consequently, there is a constant M > 0 such that ‖un‖L∞(Ω) ≤M
for all n = 1, 2, . . . . Using a standard compactness argument we get u ∈
W 1,p

0 (Ω) such that un → u strongly in W 1,p
0 (Ω). Passing to the the limit in

(1.1) with λ = λn as n→∞, we find that u is a solution to the problem

−Δpu− λ1|u|p−2u = f� + aϕ1 in Ω,

u = 0 on Ω,

which contradicts Proposition 6.5. Hence, Case (i) (a) is proved. �

Remark 6.8. Theorem 6.6 corresponds to the well-known local maximum
and anti-maximum principles, cf. [5, Theorem 27].

Now we derive some multiplicity results. To establish them, we need to
recall the standard notions of lower and upper solutions to problem (1.1).

Definition 6.9. A function u ∈ C1(Ω) is called an upper solution of (1.1)

if for all functions v ∈W 1,p
0 (Ω) with v ≥ 0 in Ω, we have

∫

Ω

|∇u|p−2〈∇u,∇v〉dx− λ1

∫

Ω

|u|p−2uv dx ≥
∫

Ω

fv dx,

u ≥ 0 on ∂Ω.

We define a lower solution u to (1.1) to be a function from C1(Ω) for which
the corresponding reversed inequalities hold.

We now need to employ special versions of more general results due to
de Coster and Henrard [7].
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Proposition 6.10 ([7, Theorem 8.1]). Let u and u, respectively, be lower
and upper solutions of (1.1) such that u ≤ u. Then problem (1.1) has at least
one weak solution u satisfying

u ≤ u ≤ u in Ω.

Proposition 6.11 ([7, Theorem 8.2]). Let u and u, respectively, be lower
and upper solutions of (1.1) and assume that there exists x0 ∈ Ω such that
u(x0) > u(x0). Then problem (1.1) has at least one solution in the closure
(with respect to C1-norm) of the set

S = {u ∈ C1
0 (Ω) : ∃x1, x2 ∈ Ω such that u(x1) < u(x1) and u(x2) > u(x2)}.

Our first multiplicity result extends Theorem 6.2.

Theorem 6.12. There exists η = η(f�, p) > 0 such that problem (1.1) with
f = f� has at least three distinct solutions, at least one of them positive and
one negative, provided

(i) either 1 < p < 2 and λ ∈ (λ1 − η, λ1);

(ii) or p > 2 and λ ∈ (λ1, λ1 + η).

Proof. First, let p > 2. According to Theorem 6.2, problem (1.1) with

λ = λδ
def
= λ1 + δ and f = f� has a positive solution uλδ

and a neg-
ative solution uλδ

. It follows from Theorems 4.1, 5.2 and 5.7 that there
exists an η+ > 0 such that uλ > uλδ

in Ω whenever λ ∈ (λ1, λ1 + η+) and
(λ, uλ) ∈ C+. Similarly, there is an η− > 0 such that vλ < uλδ

in Ω whenever

λ ∈ (λ1, λ1+η−) and (λ, vλ) ∈ C−. Here, C+ and C− are as in Corollary 5.8.
Set η = min{η+, η−}.

Note that for λ ∈ (λ1, λ1 + η) the function uλδ
(uλδ

) is an upper (lower)

solution of (1.1) with f = f�. It follows from Proposition 6.10 that (1.1)
with f = f� has a solution w ∈ C1,β(Ω) such that

uλδ
≤ w ≤ uλδ

in Ω.

Hence, problem (1.1) with f = f� has at least three distinct solutions vλ ≤
w ≤ uλ.

If 1 < p < 2, we proceed in a similar way using Proposition 6.11 in place
of Proposition 6.10. �
Remark 6.13. For 1 < p < 2, Theorem 6.12 extends [23, Theorem 2.7] by
the positivity and negativity statements.

Our second multiplicity result extends Theorems 6.1 and 6.3.
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Theorem 6.14. Let f = f� + aϕ1 with a 	= 0. Then there exists ε > 0
(small enough) with the following properties:

(i) for every ε′ ∈ (0, ε), there is η = η(f�, ε, ε′) > 0 such that ε′ < |a| < ε
and λ ∈ (λ1 − η, λ1)∪ (λ1, λ1 + η) imply that problem (1.1) has at least
three distinct solutions of which at least one is positive and at least one
is negative;

(ii) if 0 < |a| < ε then problem (1.1) with λ = λ1 has at least two distinct
solutions of which at least one is negative provided (p− 2)a < 0, and at
least one is positive provided (p− 2)a > 0.

Proof. (i) Let 1 < p < 2. We consider only the case λ < λ1 and a > 0, the
remaining cases being analogous. It follows from Theorem 6.3 that for ε > 0

small enough and every ε′ ∈ (0, ε), problem (1.1) with λ = λδ
def
= λ1 − δ/2

(recall δ ≡ δ(ε, ε′) > 0), f = f�+aϕ1 and ε′ < a < ε has a positive solution
uλδ

and a negative solution uλδ
, respectively. For λ ∈ (λδ, λ1] the function

uλδ
(uλδ

) is a lower (upper) solution of (1.1). In this case, lower and upper
solutions are unordered, so it follows from Proposition 6.11 that (1.1) has a

solution u
(1)
λ such that u

(1)
λ (x1) < uλδ

(x1) and u
(1)
λ (x2) > uλδ

(x2) at some
points x1, x2 ∈ Ω. On the other hand, taking η ≤ δ/2 sufficiently small, it
follows from Theorems 4.1 and 5.5 that problem (1.1) with λ ∈ (λ1 − η, λ1)

has a positive solution u
(2)
λ > uλδ

> 0 in Ω. Hence, for λ ∈ (λ1 − η, λ1) we
already have two distinct solutions. To get a third solution of (1.1), we now
take λ′ > λ1 with λ′ − λ1 small enough. Then, according to Theorems 4.1
and 5.5, problem (1.1) with λ = λ′ has a negative solution vλ′ < uλδ

< 0 in Ω
which is simultaneously a lower solution of (1.1) with λ ∈ (λ1−η, λ1]. Hence,

we may apply Proposition 6.10 to get a negative solution u
(3)
λ satisfying

vλ′ ≤ u
(3)
λ ≤ uλδ

< 0 in Ω.
(ii) If λ = λ1, one can proceed in the same way as above to get solutions

u
(1)
λ1

and u
(3)
λ1

< 0 in Ω.
The case p > 2 is analogous. �

Appendix A. Function spaces in the linearized problem
in weighted Sobolev spaces

The following two compact embedding results are proved in [23, Lemma 4.2]
and [23, Lemma 8.2], respectively. For the purpose of this lecture we include
these proofs below.

For 0 < δ <∞, we denote by

Ωδ
def
= {x ∈ Ω : dist(x, ∂Ω) < δ}
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the δ-neighborhood of ∂Ω. Its complement in Ω is denoted by Ω′δ = Ω \Ωδ.

Lemma A.1. Let 2 < p <∞. Then

(a) for every δ > 0 small enough, ‖ · ‖Dϕ1
is an equivalent norm on

W 1,2
0 (Ωδ);

(b) the embedding Dϕ1
↪→ L2(Ω) is compact.

Proof. Part (a) follows immediately from (2.2).
To prove (b), we start with the proof of continuity of Dϕ1

↪→ L2(Ω). We
take advantage of the Dirichlet boundary value problem (2.1) to compute
for every v ∈ C1

0 (Ω),

λ1

∫

Ω

ϕp−2
1 v2 dx = λ1

∫

Ω

ϕp−1
1 (v2ϕ−1

1 ) dx

=

∫

Ω

|∇ϕ1|p−2∇ϕ1 · ∇(v2ϕ−1
1 ) dx

= 2

∫

Ω

|∇ϕ1|p−2(∇ϕ1 · ∇v)vϕ−1
1 dx−

∫

Ω

|∇ϕ1|pv2ϕ−2
1 dx.

Adding the last integral and estimating the second last one by the Cauchy-
Schwarz inequality, we arrive at

λ1

∫

Ω

ϕp−2
1 v2 dx+

∫

Ω

|∇ϕ1|pv2ϕ−2
1 dx

≤ 2
(∫

Ω

|∇ϕ1|p−2|∇v|2 dx
)1/2(∫

Ω

|∇ϕ1|pv2ϕ−2
1 dx

)1/2

≤ 2

∫

Ω

|∇ϕ1|p−2|∇v|2 dx+
1

2

∫

Ω

|∇ϕ1|pv2ϕ−2
1 dx,

and therefore,

λ1

∫

Ω

ϕp−2
1 v2 dx+

1

2

∫

Ω

|∇ϕ1|pv2ϕ−2
1 dx ≤ 2‖v‖2Dϕ1

. (A.1)

Since C1
0 (Ω) is dense in Dϕ1

, the last inequality holds also for every v ∈ Dϕ1
.

Using (2.2) we conclude that the embedding Dϕ1
↪→ L2(Ω) is continuous.

To prove the compactness of Dϕ1
↪→ L2(Ω), we take advantage of the

Dirichlet boundary value problem (2.1) again to compute for every v ∈ Dϕ1
,

λ1

∫

Ω

ϕp−1
1 v2 dx =

∫

Ω

|∇ϕ1|p−2∇ϕ1 · ∇(v2) dx

≤ 2

∫

Ω

|∇ϕ1|p−1|∇v| · |v|dx

≤ 2‖v‖Dϕ1

(∫

Ω

|∇ϕ1|pv2 dx
)1/2

,

(A.2)
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by the Cauchy-Schwarz inequality. Let {vn}∞n=1 be any weakly convergent
sequence inDϕ1

; we may assume vn ⇀ 0. Hence,

vn ⇀ 0 weakly in L2(Ω) (A.3)

and
|∇ϕ1|(p−2)/2∇vn ⇀ 0 weakly in [L2(Ω)]N (A.4)

as n→∞. We will show that, indeed, vn → 0 strongly in L2(Ω). Given any
0 < η <∞ small enough, let us decompose Ω = Uη ∪ U ′η, where

Uη
def
= {x ∈ Ω : |∇ϕ1(x)| > η} and U ′η

def
= {x ∈ Ω : |∇ϕ1(x)| ≤ η}.

We deduce from (A.3) and (A.4) that the restrictions vn|Uη
of vn to Uη form

a weakly convergent sequence in W 1,2(Uη). It follows that ‖vn‖L2(Uη) → 0
as n→∞, by Rellich’s theorem.

Next, in (A.2) we replace v by vn. Owing to (A.4), there is a constant
C > 0 independent from n such that ‖vn‖Dϕ1

≤ Cλ1/2, and consequently,

(A.2) yields ∫

Ω

ϕp−1
1 v2n dx ≤ C

(∫

Ω

|∇ϕ1|pv2n dx
)1/2

. (A.5)

We split the integral on the right-hand side using Ω = Uη ∪ U ′η. The two
integrals are estimated by

∫

Uη

|∇ϕ1|pv2n dx ≤ ‖∇ϕ1‖p∞
∫

Uη

v2n dx, (A.6)

∫

U ′η

|∇ϕ1|pv2n dx ≤ ηp
∫

U ′η

v2n dx ≤ ηp
∫

Ω

v2n dx. (A.7)

Now choose any 0 < ε <∞. First, fix η0 > 0 small enough so that

η
p/2
0 · sup

n≥1
‖vn‖L2(Ω) ≤

ε

C
√
2
. (A.8)

Second, fix η > 0 and δ > 0 sufficiently small such that 0 < η ≤ η0 and
Ωδ ⊂ Uη. This choice is possible by the Hopf maximum principle (2.2) for
ϕ1. Third, recalling ‖vn‖L2(Uη) → 0 as n → ∞, fix an integer n0 ≥ 1 large
enough such that

‖∇ϕ1‖p/2∞ · ‖vn‖L2(Uη) ≤
ε

C
√
2

for all n ≥ n0. (A.9)
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The numbers η, δ and n0 being fixed, we first apply (A.8) and (A.9) to (A.6)
and (A.7), respectively, and then combine the last two with the inequality
(A.5), thus arriving at

∫

Ω

ϕp−1
1 v2n dx ≤ ε for all n ≥ n0. (A.10)

In particular, setting Ω′δ = Ω \ Ωδ, we infer from (2.2) and (A.10) that
‖vn‖L2(Ω′δ)

→ 0 as n→∞.

Finally, we make use of Uη ∪ Ω′δ = Ω to conclude that ‖vn‖L2(Ω) → 0 as
n→∞. The proof of the lemma is finished. �

Imbeddings that involve Hϕ1
are established next.

Lemma A.2. Let 1 < p < 2. Then

(a) the embedding Hϕ1
↪→ L2(Ω) is continuous;

(b) the embedding W 1,2
0 (Ω) ↪→ Hϕ1

is compact.

Proof. Part (a) follows immediately from (2.2).
To prove (b), first notice that there exist constants 0 < c1 ≤ c2 <∞ such

that c1 ≤ ϕ1(x)/d(x) ≤ c2 for all x ∈ Ω, where the function

d(x)
def
= dist(x, ∂Ω) = inf

x0∈∂Ω
|x− x0|, x ∈ Ω,

denotes the distance from x to ∂Ω. By well-known results taken from
Kufner [18, §8.8] or Triebel [27, §3.5.2], or simply by an inequality simi-

lar to (A.1), the Sobolev space W 1,2
0 (Ω) is continuously embedded into the

weighted Lebesgue space L2(Ω; d(x)−2 dx) endowed with the norm

‖v‖L2(Ω;d(x)−2 dx)
def
=

(∫

Ω

v2d(x)−2 dx
)1/2

<∞.

Notice that Hϕ1
= L2(Ω; d(x)p−2 dx). Consequently, using again the split-

ting Ω = Ωδ ∪ Ω′δ from the proof of Lemma A.1, we conclude that the

embedding W 1,2
0 (Ω) ↪→ Hϕ1

is compact. �

References

[1] W. Allegretto and Y.-X. Huang: A Picone’s identity for the p-Laplacian and
applications.Nonlinear Anal. 32 (1998), no. 7, 819–830. Zbl 0930.35053, MR1618334.
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