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RECENT RESULTS ON QUASILINEAR

DIFFERENTIAL EQUATIONS. I

Pavel Drábek

Abstract. This lecture follows a joint result of the speaker and Daniel
Daners. To make the exposition clear and transparent we concentrate here
only on the L∞-estimates for weak solutions for the p-Laplacian with all
standard boundary conditions on possibly non-smooth domains. We present
C1,α-regularity and maximum principle for weak solutions as an applica-
tion. We also prove existence, continuity and compactness of the resolvent
operator.

1. Introduction

In this lecture we give the proof of a priori L∞-estimates, C1,α-regularity
and maximum principle for weak solutions to the p-Laplace equation

−Δpu+ c0|u|p−2u = f in Ω,

Bu = 0 on ∂Ω
(1.1)

on an open set Ω ⊂ RN . Here Δpu := div(|∇u|p−2∇u) is the p-Laplacian
with p ∈ (1,∞), and B a suitable boundary operator associated with the
p-Laplacian made more precise later; f is a function only depending on x.
In particular, we prove that in certain situations, every weak solution is in
L∞(Ω). These lecture notes are “copy and paste” of selected parts of the
joint paper of the speaker and D. Daners [8], where also some other cases
and estimates than those considered in this lecture are dealt with (f may
depend not only on x but also on u, more general Lr(Ω)-estimates for r > 1
are proved there, etc.). For the brevity of the exposition here we concentrate
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2 PAVEL DRÁBEK

mainly on the L∞-estimates and their main consequences. Problems similar
to the above, often with f = 0, were considered in [11], [13], [14], [19], [20].

The p-Laplacian is considered here as a prototype of more general quasi-
linear operator of the second order for which similar results can be proved.
In order to keep the main ideas of the lecture as clear as possible, we do not
treat here such generalizations.

We would like to emphasize that the choice of appropriate function space
for weak solutions of (1.1) (as well as for test functions in the definition of
the weak solution) will play the crucial role in our proofs.

If p = 2 (the linear case), it is well known that the solution u is in W 2
r (Ω)

if f ∈ Lr(Ω) and the domain Ω is sufficiently smooth. Also, u satisfies an
a priori estimate ‖u‖W 2

r
≤ c(‖f‖r+‖u‖r) with c > 0, a constant independent

of f ∈ Lr(Ω), due to [2]. By using embedding theorems for Sobolev spaces,
we obtain the estimate

‖u‖m(r) ≤ c(‖f‖r + ‖u‖r)
with m(r) = Nr(N − 2r)−1 if 1 < r < N/2 and m(r) = ∞ if r > N/2. As
shown in [7], such an estimate remains valid for a larger class of operators
and non-smooth domains, even if the W 2

r -estimates fail. In the linear case,
the exponent m(r) is optimal. Also it is easy to guess from the embedding
theorems for Sobolev spaces as mentioned above.

In this lecture we want to generalise these estimates valid for the linear
case p = 2 to arbitrary p ∈ (1,∞). We concentrate on the case m(r) = ∞
since the L∞-estimates are the starting point for the C1,α-regularity and the
maximum principle.

Actually, there are no W 2
r -estimates if p 	= 2, that is, if f ∈ Lr(Ω), we

cannot expect that u ∈ W 2
r (Ω) even if Ω is smooth (like in the linear case

p = 2). We demonstrate this point by looking at the Dirichlet problem on
an interval and with p > 2. It is well known that there exists a principal
eigenvalue λ1 and a principal eigenfunction ϕ > 0 to the problem

−(|ϕ′|p−2ϕ′)′ = λ1|ϕ|p−2ϕ in (0, 1),

ϕ(0) = ϕ(1) = 0.
(1.2)

Also ϕ ∈ C1([0, 1]), ϕ′(1/2) = 0 (see [3]), and it follows from [9, Theo-
rem 10.4] that |ϕ′|p−2ϕ′ ∈ C1([0, 1]). Integrating the first equation in (1.2)
over (12 , x) we conclude that

ϕ′(x) ∼
(
x− 1

2

)1/(p−1)

and ϕ′′(x) ∼
(
x− 1

2

)−(p−2)/(p−1)

as x→ 1/2. Hence ϕ 	∈W 2
r (0, 1) for r > (p− 1)/(p− 2).
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QUASILINEAR ELLIPTIC PDE’S I 3

The basic method to prove L∞-estimates originates from the seminal
paper [17]. We use suitable cutoff functions of the solution as test functions,
interpolation inequalities and then do an iteration based on the validity of
a Sobolev-type inequality for functions in our suitably chosen function space.
This allows to deal with arbitrary domains in case of Dirichlet boundary
conditions. It also allows “almost” arbitrary domains in case of Robin-type
boundary conditions by using an inequality due to Maz’ya [15], [16] and
certain classes of non-smooth domains for Neumann boundary conditions
(see Section 4). The proof of the main results is given in Section 3.

2. Assumptions and main results

In this section we state precise assumptions and then discuss main results.
We always assume that Ω is an open set. This set is not necessarily bounded
or connected. The boundary ∂Ω is assumed to be the disjoint union of Γ1,
Γ2 and Γ3. We study regularity properties of weak solutions of

−Δpu+ c0|u|p−2u = f in Ω,

u = 0 on Γ1,

|∇u|p−2 ∂u

∂ν
= 0 on Γ2,

|∇u|p−2 ∂u

∂ν
+ b0|u|p−2u = 0 on Γ3.

(2.1)

Here, −Δpu := −div
(
|∇u|p−2u

)
is the p-Laplacian with p ∈ (1,∞). More-

over, c0 ∈ L∞(Ω), b0 ∈ L∞(Γ3), b0 ≥ 0 and ν is the outward pointing unit
normal to ∂Ω. The boundary conditions are to be understood in a weak
sense as explained below. To define weak solutions of (2.1), we let

a0(u, v) :=

∫

Ω

|∇u|p−2∇u · ∇v dx+

∫

Ω

c0(x)|u|p−2uv dx (2.2)

for all u, v ∈W 1
p (Ω). Then we define

a(u, v) := a0(u, v) +

∫

Γ3

b0|u|p−2uv dHN−1 (2.3)

whenever the last integral is well defined. Here, HN−1 denotes the
(N − 1)-dimensional Hausdorff measure, which coincides with the usual sur-
face measure if Γ3 is Lipschitz. We next give conditions on the space of test
functions Vp for the above problem.
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4 PAVEL DRÁBEK

Assumption 2.1. We assume that Vp is a Banach space such that

◦
W 1

p(Ω) ↪→ Vp ↪→W 1
p (Ω), (2.4)

{
u ∈ C1

c (Ω \ Γ1) ∩W 1
p (Ω) :

∫

Γ3

|u|p dHN−1 <∞
}
⊂ Vp, (2.5)

and that the norm

‖u‖Vp
:=

(
‖∇u‖pp + ‖u‖pp + ‖u p

√
b0‖pLp(Γ3)

)1/p
(2.6)

is an equivalent norm on Vp. Finally, we assume that

umin{|u|t−1, αt−1} ∈ Vp

for all α > 0, t ≥ 1 and u ∈ Vp.

Remark 2.2. (a) Note that, depending on b0 and Γ3, the norm ‖ · ‖Vp
may

be stronger than the usual W 1
p -norm as shown in Section 4.

(b) Since the Lp-norms are uniformly convex, also the Vp-norm defined
by (2.6) is uniformly convex. Hence, by Milman’s theorem, Vp is a reflexive
space (see [22, Section 5.2]).

Definition 2.3. Let f ∈ V ′p . Then we call u ∈ Vp a weak solution of (2.1)
if a(u, v) = 〈f, v〉 for all v ∈ Vp.

In the above definition 〈· , ·〉 denotes duality on Vp. Note that if f ∈ Lq(Ω)
for some q ∈ [1,∞], then

〈f, v〉 =
∫

Ω

fv dx

whenever the integral exists. We next introduce the main assumption im-
plying our results on L∞-estimates.

Assumption 2.4. Suppose that there exist δ0 ≥ 0, cB > 0 and d > p such
that

‖u‖pdp/(d−p) ≤ cB
(
a(u, u) + δ0‖u‖pp

)
(2.7)

for all u ∈ Vp.

By the usual Sobolev embedding theorem, the smallest possible constant
is d = N but it may well be that some d > N is optimal. In particular, this
is the case for Neumann boundary conditions if the domain is not Lipschitz
(see Section 4). We set

λ0 := ‖c−0 ‖∞ + δ0. (2.8)
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QUASILINEAR ELLIPTIC PDE’S I 5

If λ0 = 0, we call the problem coercive since then the functional a(u, u)
defined by (2.3) is coercive on Vp. If λ0 > 0, we call the problem non-
coercive.

Note also that the definition of a weak solution only makes sense if f ∈ V ′p .
By (2.7), we have Vp ↪→ Ldp/(d−p)(Ω). Also, by Assumption 2.1, C∞c (Ω) ⊂ Vp

and so Vp is dense in Lp(Ω) ∩ Ldp/(d−p)(Ω). Hence, by duality,

L( dp
d−p )

′(Ω) ↪→ V ′p .

(Here, p′ is the conjugate exponent to p given by 1/p+1/p′ = 1.) Note that

Lr(Ω) ↪→ L( dp
d−p )

′(Ω)

if |Ω| <∞ and

r ≥
( dp

d− p

)′
=

dp′

d+ p′
. (2.9)

Hence, we consider (2.1) for f ∈ Lr(Ω) with r as above.
Next we state a priori estimates. We start with an easier case, namely

the case of a coercive problem.

Theorem 2.5 (Coercive problem). Suppose that Assumptions 2.1 and 2.2
hold with λ0 = 0. Moreover, let f ∈ Lr(Ω) ∩ V ′p and let u ∈ Vp be a weak
solution of (2.1). Then there exists a constant C > 0 depending only on p,
d and r such that

‖u‖p−1
∞ ≤ CcB|Ω|

p
d− 1

r ‖f‖r (2.10)

if r > d/p and |Ω| <∞, and

‖u‖p−1
∞ ≤ CcB‖f‖r + ‖u‖p−1

p (2.11)

if r > d/p (with no restriction on |Ω|).
Next we state estimates valid for domains of finite measure, but possibly

non-coercive problems.

Theorem 2.6 (Finite measure). Suppose that |Ω| < ∞, and that Assump-
tions 2.1 and 2.2 hold. Moreover, let f ∈ Lr(Ω), r ≥ dp′/(d + p′), and let
u ∈ Vp be a weak solution of (2.1). Then there exists a constant C > 0
depending only on p, d and r such that

‖u‖p−1
∞ ≤ CcB|Ω|

p
d− 1

rG(f, u) (2.12)
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6 PAVEL DRÁBEK

if r > d/p, where either

G(f, u) = ‖f‖r + λ0‖u‖p−1
r(p−1)

or

G(f, u) =

{
‖f‖r + λ0|Ω|

1
r− 1

p′ ‖u‖p−1
p if r < p′,

‖f‖r + cμBλ
1+μ
0 ‖u‖p−1

p if r ≥ p′

with μ :=
d

p

( 1

p′
− 1

r

)
.

Note that r(p − 1) < 1 if r < p′/p, so ‖·‖r(p−1) is not a norm because it
does not satisfy the triangle inequality, but we simply understand it to be

the integral
(∫

Ω
|u|r(p−1) dx

)1/r(p−1)
.

We finally give an estimate with no restriction on the measure of Ω and
possibly for non-coercive problems.

Theorem 2.7 (Arbitrary measure). Suppose that Assumptions 2.1 and 2.2
hold. Moreover, let f ∈ Lr(Ω)∩V ′p, r ≥ p′, and let u ∈ Vp be a weak solution
of (2.1). Then there exists a constant C > 0 depending only on p, d and r
such that

‖u‖p−1
∞ ≤ CcBG(f, u) + ‖u‖p−1

p (2.13)

if r > d/p, where either

G(f, u) = ‖f‖r + λ0‖u‖p−1
r(p−1)

or
G(f, u) = ‖f‖r + cμBλ

1+μ
0 ‖u‖p−1

p

with μ as in Theorem 2.6.

Based on previous L∞-estimates, we can formulate the following regularity
result.

Theorem 2.8 (Regularity). Suppose that Assumptions 2.1 and 2.2 hold,
f ∈ Lr(Ω) ∩ V ′p with r > d/p. Then any weak solution u ∈ Vp of problem

(2.1) satisfies u ∈ C1,α(Ω) with some α ∈ (0, 1).

We also have the maximum principle for weak solutions.

Theorem 2.9 (Maximum principle). Suppose that Assumptions 2.1 and 2.2
hold, f ∈ Lr(Ω)∩ V ′p with r > d/p, f ≥ 0 a.e. in Ω. Then any non negative
and non trivial weak solution u ∈ Vp is strictly positive in Ω.
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QUASILINEAR ELLIPTIC PDE’S I 7

3. Proof of the main results

The proof of the a priori estimates works by iteration. The iteration pro-
cedure is based on a basic inequality which we derive first. To make sure
all relevant norms involved stay finite, we need to truncate the solution u of
(2.1). For α > 0 and t ≥ 1 we set

ψα,t(ξ) := ξmin{αt−1, |ξ|t−1}. (3.1)

Further, we define

vα,q := ψα,q−p+1 ◦ u and wα,q := ψα,q/p ◦ u

if q ≥ p. It follows from [12, Theorem 7.8]) that vα,q, wα,q ∈ W 1
p (Ω) for all

α > 0 and q ≥ p if u ∈W 1
p (Ω). We also need to assume that vα,q, wα,q ∈ Vp

if u ∈ Vp which is the case in all standard situations as shown in Section 4
(cf. Appendix A).

Proposition 3.1. Suppose that Assumptions 2.1 and 2.2 hold. Moreover,
let u be a weak solution of (2.1) with f ∈ Lr(Ω)∩V ′p for some r ≥ dp′/(d+p′).
If q ≥ p, then

‖wα,q‖pdp/(d−p) ≤ cBc(p, q)
(
‖f‖r‖u‖q−p+1

r′(q−p+1) + λ0‖wα,q‖pp
)

(3.2)

for all α > 0, where

c(p, q) :=
(q
p

)p 1

q − p+ 1
. (3.3)

Proof. By Assumption 2.1, we have vα,q, wα,q ∈ Vp. It follows from [12,
Theorem 7.8] that

∇(ψα,t ◦ u) =

⎧
⎪⎨
⎪⎩

t|u|t−1∇u if |u| < α,

0 if |u| = α,

αt−1∇u if |u| > α

(3.4)

for all α > 0 and t ≥ 1. We have

|∇wα,q|p = |∇(u|u|q/p−1)|p =
(q
p

)p

|u|q−p|∇u|p

=
(q
p

)p 1

q − p+ 1
|∇u|p−2∇u · ∇(u|u|q−p)

= c(p, q)|∇u|p−2∇u · ∇vα,q
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8 PAVEL DRÁBEK

whenever |u| < α, where c(p, q) is defined by (3.3). Note that c(p, q) ≥ 1 for
all q ≥ p. If |u| > α, then

|∇wα,q|p = |∇u|pαp(q/p−1) = |∇u|p−2∇u · ∇(αq−pu)

= |∇u|p−2∇u · ∇vα,q ≤ c(p, q)|∇u|p−2∇u · ∇vα,q

for all q ≥ p and α > 0. If |u| = α, then the inequality is trivial. Combining
the inequalities we get

|∇wα,q|p ≤ c(p, q)|∇u|p−2∇u · ∇vα,q (3.5)

for all q ≥ p and α > 0. Also, if |u| ≤ α, then

|wα,q|p = |u|q = |u|p−2|u|q−p+2 = |u|p−2u2|u|q−p = |u|p−2uvα,q.

If |u| ≥ α, then

|wα,q|p = αp(q/p−1)|u|p = |u|p−2u2αq−p = |u|p−2uvα,q.

Hence,

|wα,q|p = |u|p−2uvα,q (3.6)

for all α > 0 and q ≥ p. Since c(p, q) ≥ 1 and c0(x) + ‖c−0 ‖∞ ≥ 0, using
(3.5), (3.6) and (2.2) we get

a0(wα,q, wα,q) ≤ c(p, q)

∫

Ω

|∇u|p−2∇u · ∇vα,q dx

+

∫

Ω

(c0(x) + ‖c−0 ‖∞)|wα,q|p dx

≤ c(p, q)
(∫

Ω

|∇u|p−2∇u · ∇vα,q dx

+

∫

Ω

(c0(x) + ‖c−0 ‖∞)|wα,q|p dx
)

= c(p, q)
(
a0(u, vα,q) + ‖c−0 ‖∞‖wα,q‖pp

)
.

Using the definition of a given in (2.3) and the fact that c(p, q) ≥ 1, we get

a(wα,q, wα,q) ≤ c(p, q)
(
a(u, vα,q) + ‖c−0 ‖∞‖wα,q‖pp

)
.
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QUASILINEAR ELLIPTIC PDE’S I 9

Since wα,q, vα,q ∈ Vp, it finally follows from Assumption 2.2

‖wα,q‖pdp/(d−p) ≤ cB
(
a(wα,q, wα,q) + δ0‖wα,q‖p

)

≤ cBc(p, q)
(
a(u, vα,q) + λ0‖wα,q‖pp

) (3.7)

for all α > 0 and q ≥ p. We next estimate the terms on the right-hand side.
First, since u is a weak solution of (2.1) and f ∈ Lr(Ω), we get from Hölder’s
inequality

a(u, vα,q) = 〈f, vα,q〉 ≤ ‖f‖r‖vα,q‖r′ .
By definition of vα,q, we have |vα,q| ≤ |u|q−p+1, so

a(u, vα,q) ≤ ‖f‖r‖u‖q−p+1
r′(q−p+1).

and thus (3.2) follows if we combine everything. �
Corollary 3.2. Suppose that Assumptions 2.1 and 2.2 hold. Moreover, let
u be a weak solution of (2.1) with f ∈ Lr(Ω)∩ V ′p for some r ≥ dp′/(d+ p′).
If q ≥ p, then

‖wα,q‖pdp/(d−p) ≤ cBc(p, q)
(
‖f‖r + λ0‖u‖p−1

r(p−1)

)
‖u‖q−p+1

r′(q−p+1) (3.8)

for all α > 0, where c(p, q) is defined by (3.3).

Proof. By the definition of wα,q and Hölder’s inequality,

‖wα,q‖pp ≤ ‖u‖qq =

∫

Ω

|u|q−p+1|u|p−1 dx ≤ ‖u‖p−1
r(p−1)‖u‖

q−p+1
r′(q−p+1).

Substituting into (3.2), we obtain the assertion. �
Remark 3.3. If Ω has infinite measure, we cannot expect u ∈ Ls(Ω) for
s ∈ [1, p). Hence, in order for the right-hand side of (3.8) to be finite, we
need that r(p − 1) ≥ p, that is, r ≥ p′ if λ0 	= 0. Since dp′/(d + p′) ≤
p′ for all 1 < p < d, we need to assume that r ≥ p′ if we do not want
our estimates to depend on the measure of Ω. In case of finite measure

‖u‖s ≤ |Ω| 1s− 1
p ‖u‖p < ∞ even if we admit s ∈ (0, 1). In the latter case,

‖u‖s := (
∫
Ω
|u|s dx)1/s is not a norm, but for convenience we still use the

same notation for the integral. In the coercive case, where λ0 = 0, the term
involving ‖u‖r(p−1) does not appear at all.

We next derive versions of the above inequality replacing ‖u‖r(p−1) by
‖u‖p. According to the above remark, we need to distinguish two cases,
namely the case of Ω having finite measure or not.
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10 PAVEL DRÁBEK

Corollary 3.4 (Finite measure). Suppose that Assumptions 2.1 and 2.2
hold. Moreover, let u be a weak solution of (2.1) with f ∈ Lr(Ω) for some r,
dp′/(d+ p′) ≤ r ≤ p′. If q ≥ p and |Ω| <∞, then

‖wα,q‖pdp/(d−p)

≤ cBc(p, q)
(
‖f‖r + λ0|Ω|1/r−1/p′‖u‖p−1

p

)
‖u‖q−p+1

r′(q−p+1)

(3.9)

for all α > 0, where c(p, q) is defined by (3.3).

Proof. Since |Ω| <∞ and r(p− 1) ≤ p, we can apply Hölder’s inequality
with s := p′/r ≥ 1 to get

‖u‖p−1
r(p−1) =

(∫

Ω

|u|r(p−1) dx
)1/r

≤ |Ω|1/rs′‖u‖1/rsp = |Ω|1/r−1/p′‖u‖p−1
p .

Now the desired inequality follows from (3.8). �

We finally establish a version for arbitrary measure. To this end, we need
an interpolation inequality. It is similar to the standard one such as found

in [12, p. 146] but we admit ‖u‖s :=
(∫

Ω
|u|s ds

)1/s
also for s ∈ (0, 1). We

include the precise statement and proof for completeness.

Lemma 3.5. Suppose that 0 < s < p < t with p ≥ 1. Set

μ :=
t(p− s)

s(t− p)
.

Then

‖u‖pp ≤ ε−μ‖u‖ps + ε‖u‖pt
for all ε > 0 whenever the right-hand side is finite.

Proof. We want to choose τ ∈ (0, 1) and σ, ρ ≥ 1 with 1/p = 1/σ + 1/ρ
such that τσ = s and (1− τ)ρ = t and thus, by Hölder’s inequality,

‖u‖p = ‖|u|τ |u|1−τ‖p ≤ ‖|u|τ‖σ‖|u|1−τ‖ρ = ‖u‖τs‖u‖1−τ
t .

Solving the system of three equations for σ, ρ and τ , we get

σ = p
t− s

t− p
≥ 1, ρ = p

t− s

p− s
≥ 1, τ =

s(t− p)

p(t− s)
∈ (0, 1),
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QUASILINEAR ELLIPTIC PDE’S I 11

so the above works. Next we apply Young’s inequality to obtain

‖u‖p ≤ ‖u‖τs‖u‖1−τ
t =

(
ε−(1−τ)/pτ‖u‖s

)τ(
ε1/p‖u‖t

)1−τ

≤ τε−(1−τ)/pτ‖u‖s + (1− τ)ε1/p‖u‖t.

Finally, note that for a, b ≥ 0 we have a ≤ (ap + bp)1/p and b ≤ (ap + bp)1/p,
so τa+ (1− τ)b ≤ (ap + bp)1/p and finally

(τa+ (1− τ)b)p ≤ ap + bp.

Hence, from the above ‖u‖pp ≤ ε−(1−τ)/τ‖u‖ps + ε‖u‖pt . Using the value for
τ , we get

μ =
1− τ

τ
=

t(p− s)

s(t− p)

as claimed. �
Corollary 3.6 (Arbitrary measure). Suppose that Assumptions 2.1 and 2.2
hold. Moreover let u be a weak solution of (2.1) with f ∈ Lr(Ω) ∩ V ′p for
some r ≥ p′. If q ≥ p, then there exists c(q) > 0 depending on r, d and p
such that

‖wα,q‖pdp/(d−p) ≤ cBc(q)
(
‖f‖r + cμBλ

1+μ
0 ‖u‖p−1

p

)
‖u‖q−p+1

r′(q−p+1) (3.10)

for all α > 0, where

μ :=
d

p

( 1

p′
− 1

r

)
≥ 0 (3.11)

and the function c(q) ≥ 1 grows at most polynomially in q ≥ p.

Proof. We start from (3.2) and use an interpolation argument to absorb
part of ‖wα,q‖pp on the left-hand side. We first note that if r ≥ p′ and d > p,
then

pp′r′

p′ + r′
≤ p ≤ dp

d− p
.

Hence, by the interpolation inequality from Lemma 3.5,

‖wα,q‖pp ≤ ε−μ‖wα,q‖ppp′r′/(p′+r′) + ε‖wα,q‖pdp/(d−p)

with μ ≥ 0 given by (3.11). Now recall that |wα,q|p ≤ |u|q. Hence, by
Hölder’s inequality we have

‖wα,q‖ppp′r′/(p′+r′) ≤ ‖|u|p−1|u|q−p+1‖p′r′/(p′+r′)

≤ ‖|u|p−1‖p′‖|u|q−p+1‖r′ = ‖u‖p−1
p ‖u‖q−p+1

r′(q−p+1)
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12 PAVEL DRÁBEK

and therefore

‖wα,q‖pp ≤ ε‖wα,q‖pdp/(d−p) + ε−μ‖u‖p−1
p ‖u‖q−p+1

r′(q−p+1)

for all ε > 0 and q ≥ p. By (3.8),

‖wα,q‖pdp/(d−p) ≤ cBc(p, q)
(
‖f‖r + λ0ε

−μ‖u‖p−1
p

)
‖u‖q−p+1

r′(q−p+1)

+ εcBc(p, q)λ0‖wα,q‖pdp/(d−p).

Setting ε := (2cBc(p, q)λB)−1 and moving the last term to the left-hand side,
we get

‖wα,q‖pdp/(d−p) ≤ (2c(p, q))1+μcB
(
‖f‖r + cμBλ

1+μ
0 ‖u‖p−1

p

)
‖u‖q−p+1

r′(q−p+1)

for all q ≥ p. We also used that c(p, q) ≥ 1 and so c(p, q) ≤ c(p, q)1+μ. If we
set c(q) := (2c(p, q))1+μ, the assertion of the corollary follows. �

All the inequalities derived above have the form

‖wα,q‖pdp/(d−p) ≤ c(q)cBG(f, u)‖u‖q−p+1
r′(q−p+1) (3.12)

for an appropriate function G(f, u), where c(q) grows at most polynomially
in q ≥ p. In particular, we have the following cases:

(1) If λ0 = 0 and r ≥ dp′/(d+ p′), then

G(f, u) = ‖f‖r (3.13)

and c(q) := c(p, q) by Proposition 3.1 (Coercive case).

(2) If λ0 ≥ 0, and r ≥ dp′/(d+ p′) if |Ω| <∞ and r ≥ p′ otherwise, then

G(f, u) = ‖f‖r + λ0‖u‖p−1
r(p−1) (3.14)

and c(q) := c(p, q) by Corollary 3.2.

(3) If |Ω| <∞, λ0 ≥ 0 and dp′/(d+ p′) ≤ r ≤ p′, then

G(f, u) = ‖f‖r + λ0|Ω|1/r−1/p′‖u‖p−1
p (3.15)

and c(q) := c(p, q) by Corollary 3.4.
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(4) If λ0 ≥ 0 and r ≥ p′, then

G(f, u) = ‖f‖r + cμBλ
1+μ
0 ‖u‖p−1

p (3.16)

and c(q) :=
(
2c(p, q)

)1+μ
by Corollary 3.6, where μ is defined by (3.11).

We now implement an iteration procedure based on (3.12) which allows
us to prove all versions of a priori estimates stated if we take into account
the above. Since |wα,q|p ↗ |u|q as α → ∞, it follows from (3.12) and the
monotone convergence theorem that

‖u‖qdq/(d−p) ≤ c(q)cBG(f, u)‖u‖q−p+1
r′(q−p+1) (3.17)

whenever the right-hand side is finite. Assuming that G(f, u) is finite and
non-zero, we set

v :=
u

(cBG(f, u))1/(p−1)
. (3.18)

Then (3.17) turns into

‖v‖qdq/(d−p) ≤ c(q)‖v‖q−p+1
r′(q−p+1). (3.19)

The idea then is to iterate the inequality by choosing an initial q0 and com-
puting qn+1 from qn by solving the equation

dqn
d− p

= r′(qn+1 − p+ 1).

It turns out that
qn+1 = ηqn + p− 1 (3.20)

with

η :=
d

r′(d− p)
. (3.21)

If we do that, (3.19) turns into

‖v‖qn+1

dqn+1/(d−p) ≤ c(qn+1)‖v‖ηqndqn/(d−p) (3.22)

for all n ∈ N. The right-hand side is certainly finite for n = 0 by (2.7) if we
set q0 = p. The above inequality tells us that u ∈ Ldq1/(d−p)(Ω). Applying
the inequality again, we conclude that u ∈ Ldq2/(d−p)(Ω) and iterating n
times, we get u ∈ Ldqn/(d−p)(Ω) for all n ∈ N. However, we can utilize it
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if we know that (qn) is an increasing sequence. By the recursion formula
(3.20) and induction, we have

qn = ηnq0 + (p− 1)

n−1∑

k=0

ηk = ηn(q0 − p+ 1) + (p− 1)

n∑

k=0

ηk,

and therefore

qn = ηn(q0 − p+ 1) + (p− 1)

n∑

k=0

ηk. (3.23)

We now prove that (qn) is increasing if we set q0 := p. Then from (3.23),

qn+1 − qn = ηn+1 − ηn + (p− 1)ηn+1 = ηn(ηp− 1)

for all n ∈ N. This value is positive if and only if ηp − 1 > 0 which is the
case if and only if

dp

d− p
> r′,

by (3.21). The above is equivalent to the assumption (2.9) on r, so we
really have an improvement of regularity at each iteration step. Our a priori
estimates are a consequence of the following lemma.

Lemma 3.7. Suppose that (3.22) holds, v is defined by (3.18), and q0 ≥ p
is such that u ∈ Ldq0/(d−p)(Ω). Then

‖v‖qndqn/(d−p) ≤
( n∏

k=1

c(qk)
ηn−k

)
‖v‖η

nq0
dq0/(d−p) (3.24)

for all n ∈ N.
Proof. We give a proof by induction. For n = 1, (3.24) reduces to (3.22)
for n = 0. If n > 1, then by (3.22) and the induction assumption,

‖v‖qn+1

dqn+1/(d−p) ≤ c(qn+1)‖v‖ηqndqn/(d−p)

≤ c(qn+1)
( n∏

k=1

c(qk)
ηn−k

)η

‖v‖η
n+1q0

dq0/(d−p)

= c(qn+1)
( n∏

k=1

c(qk)
ηn−k+1

)
‖v‖η

n+1q0
dq0/(d−p)

=
(n+1∏

k=1

c(qk)
η(n+1)−k

)
‖v‖η

n+1q0
dq0/(d−p),

which is exactly what we need. �
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Theorem 3.8. Suppose that (3.12) holds, that dp′/(d + p′) ≤ r and that
q0 ≥ p. If G(f, u) is finite and non-zero, then there exists a constant C
depending only on d, p, r and on the function c(q) such that

‖u‖q0+
r(d−p)(p−1)

rp−d
∞ ≤ CcBG(f, u)

r(d−p)
rp−d ‖u‖q0dq0/(d−p) (3.25)

if r > d/p.

Proof. Assume that r > d/p and that q0 ≥ p is such that u ∈ Ldq0/(d−p)(Ω).
Using that η > 1 (η is defined by (3.21)), we claim that

ηnq0 ≤ qn ≤ (2η)nq0 (3.26)

for all n ∈ N. We give a proof by induction. For n = 0 the inequality is
obvious. Suppose now that (3.26) holds for some n ≥ 0. Since η > 1 and
p− 1 ≤ p ≤ q0 ≤ ηn+1q0 ≤ ηqn it follows that

ηn+1q0 ≤ ηqn ≤ ηqn + p− 1 = qn+1 ≤ 2ηqn ≤ (2η)n+1q0

as required. Hence, (3.26) holds for all n ≥ 0. If we take the ηn-th root of
(3.24) we get

‖v‖qnη
−n

dqn/(d−p) ≤
( n∏

k=1

c(qk)
η−k

)
‖v‖q0dq0/(d−p) (3.27)

for all n ≥ 1. Next we derive a bound for the product in the above inequality
by using that c(q) has polynomial growth. By assumption there exist β ≥ 1
and t ≥ 0 such that

c(q) ≤ βqt

for all q ≥ p. Using (3.26), we see that

c(qk) ≤ β(2η)ktqt0 ≤ (2βq0η)
kt

for all k ≥ 1. Hence, (3.27) implies that

‖v‖qnη
−n

dqn/(d−p) ≤
( n∏

k=1

(2βq0η)
ktη−k

)
‖v‖q0dq0/(d−p)

≤ (2βq0η)
t ∞

k=1 kη−k‖v‖q0dq0/(d−p),
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16 PAVEL DRÁBEK

where the series in the exponent converges since η > 1. Hence, if we set

C := (2βq0η)
t ∞

k=1 kη−k

<∞

we get

‖v‖qnη
−n

dqn/(d−p) ≤ C‖v‖q0dq0/(d−p) (3.28)

for all n ∈ N with C ≥ 1 independent of n ∈ N. In order to let n → ∞ we
need to compute the limit of qnη

−n. From (3.23), using that η > 1, we get

lim
n→∞

qn
ηn

= q0 − p+ 1 + (p− 1)
r∑

k=0

η−k

= q0 − p+ 1 +
p− 1

1− η−1

= q0 − p+ 1 +
d(r − 1)(p− 1)

rp− d

= q0 +
r(d− p)(p− 1)

rp− d
.

Letting n→∞ in (3.28) and noting that qn →∞, we get

‖v‖q0+
r(d−p)(p−1)

rp−d
∞ = lim

n→∞
‖v‖qnη

−n

dqn/(d−p) ≤ C‖v‖q0dq0/(d−p) (3.29)

which is equivalent to (3.25) if we take into account (3.18). �
Corollary 3.9. Suppose the assumptions of the above theorem are satisfied
and that r > d/p. If u ∈ L∞(Ω), then there exists a constant C > 0
depending only on d, p and r such that

‖u‖p−1
∞ ≤ CcB|Ω|

p
d− 1

rG(f, u) (3.30)

if Ω has finite measure and

‖u‖p−1
∞ ≤ CcBG(f, u) + ‖u‖p−1

p (3.31)

or
‖u‖p−1

∞ ≤ CcBG(f, u) + ‖u‖p−1
r(p−1) (3.32)

otherwise.
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Proof. Let v be defined by (3.18). Then v ∈ Lp(Ω) ∩ L∞(Ω) and thus
v ∈ Ldq0/(d−p)(Ω) for all q0 ≥ p. First suppose that Ω has finite measure.
Then, by Hölder’s inequality,

‖v‖pdp
d−p

≤ |Ω|(d−p)/d‖v‖p∞.

Substituting this into (3.29), setting q0 = p, we get

‖v‖p+
r(d−p)(p−1)

rp−d
∞ ≤ C|Ω|(d−p)/d‖v‖p∞.

Rearranging and using the definition of v, we get (3.30) by renaming the
constant C. Let s ≥ p and choose q0 ≥ p such that s ≤ dq0/(d − p). By
interpolation we get

‖v‖q0dq0
d−p

≤ ‖v‖s(1−p/d)
s ‖v‖q0−s(1−p/d)

∞ .

If we set

δ :=
dr(p− 1)

rp− d
,

then (3.29) implies

‖v‖q0+δ(1−p/d)
∞ ≤ C‖v‖s(1−p/d)

s ‖v‖q0−s(1−p/d)
∞ .

Dividing by ‖v‖q0−s(1−p/d)
∞ , we have

‖v‖(δ+s)(1−p/d)
∞ ≤ C‖v‖s(1−p/d)

s

or equivalently
‖v‖(δ+s)

∞ ≤ Cd/(d−p)‖v‖ss.
Using the definition of δ and Young’s inequality, we obtain

‖v‖p−1
∞ ≤ C

rp−d
r(d−p)

δ
s+δ ‖v‖(p−1) s

s+δ
p ≤ δ

s+ δ
C

rp−d
r(d−p) +

s

s+ δ
‖v‖p−1

s .

Renaming the constant C, we get

‖v‖p−1
∞ ≤ C + ‖v‖p−1

s .

Now if we choose s := p we get (3.31), and if r ≥ p′ and we choose s :=
r(p − 1) we get (3.32)by using the definition of v, completing the proof of
the corollary. �

kniha_Institute_of_Mathematics_v25   25kniha_Institute_of_Mathematics_v25   25 7.9.2011   9:45:167.9.2011   9:45:16



18 PAVEL DRÁBEK

We now derive the main theorems stated in Section 2.

Proof of Theorem 2.5. Suppose that the problem is coercive, that is,
λ0 = 0. As seen in (3.13) we can set G(f, u) := ‖f‖r. Recall that r > d/p.
If we set γ := r(d− p)/(rp− d) and q0 := p we get from Theorem 3.8 that

‖u‖p+γ(p−1)
∞ ≤ C

(
cB‖f‖r

)p+γ‖u‖pdp/(d−p),

where the right-hand side is finite because u ∈ Ldp/(d−p)(Ω) by (2.7). Hence
u ∈ L∞(Ω). Now (2.10) and (2.11) follow from Corollary 3.9, completing
the proof of Theorem 2.5. �
Proof of Theorem 2.6. Suppose that |Ω| <∞ and that λ0 ≥ 0. If r < p′

we let G(f, u) as in (3.15), if r ≥ p′ we let G(f, u) be as in (3.16). In both
cases G(f, u) <∞ since u ∈ Lp(Ω) and f ∈ Lr(Ω).

Recall that r > d/p. Then we see that u ∈ L∞(Ω) by setting q0 = p in
(3.25). Hence, (2.12) follows from Corollary 3.9.

We get the fact that u ∈ Lr(p−1)(Ω) since r(p − 1) ≤ dr(p − 1)/(d − p).
Hence, we can use G(f, u) as defined in (3.14) instead of (3.15), proving the
remaining assertion of Theorem 2.6. �
Proof of Theorem 2.7. If |Ω| is possibly infinite and λ0 ≥ 0, then
the proof is similar to the one of Theorem 2.6, but we can only apply the
arguments for r ≥ p′ (see also Remark 3.3). �
Proof of Theorem 2.8. The C1,α-regularity of the weak solution follows
from above L∞-estimates and the regularity result of Tolksdorf [20]. �
Proof of Theorem 2.9. Assume that u is a non negative and non trivial
weak solution of (2.1) which is not strictly positive in Ω. Continuity of u
(Theorem 2.8) implies that there exists x0 ∈ Ω such that u(x0) = 0 and
a cube K := K(3ρ) ⊂ Ω of side 3ρ and center x0 whose sides are parallel to
the coordinate axes with the following properties:

(a) u 	≡ 0 in K(2ρ);

(b) there exist M > 0 such that 0 ≤ u < M in K (see (i)–(iii) above);

(c) u is a weak supersolution of

−Δpu+ c0|u|p−2u = 0 in K (3.33)

(this is due to the fact that f is non negative in Ω);

(d) minx∈K(ρ) u(x) = 0.

(Notice that K(ρ) and K(2ρ) are cubes of center x0 and side ρ and 2ρ,
respectively.) Now, (a)–(d) contradict Trudinger [21, Thm. 1.2]. Hence,
u is strictly positive in Ω. �
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4. The choice of function spaces

In this section we discuss some examples where our results apply. We essen-
tially look at the Dirichlet, Neumann and Robin problems separately and
identify the spaces Vp and the “dimension” d appearing in the embedding
inequality (2.7). We present only some model problems but many kinds of
mixed problems are also possible. We give a general criterion for the last
part of Assumption 2.1 in Appendix A. We also prove there that it applies
to the standard examples discussed below.

4.1. Dirichlet boundary conditions. We assume that ∂Ω = Γ1 and let

Vp :=
◦
W 1

p(Ω) which is by definition the closure of the set of test functions

having compact support in the arbitrary open set Ω ⊂ RN in W 1
p (Ω). It is

well known that if N > p, then there exists a constant c only depending on
N and p such that

‖u‖Np/(N−p) ≤ c ‖∇u‖p

for all u ∈
◦
W 1

p(Ω) (see [12, Theorem 7.10]). We can therefore set d := N in
(2.7) and δ0 := 0 in Assumption 2.2. Hence, if c0 ≥ 0, then λ0 = 0, so the
problem is coercive for any open set. If |Ω| < ∞, we can replace N by any
d ≥ N and find a constant also depending on |Ω| such that

‖u‖dp/(d−p) ≤ c ‖∇u‖p

for all u ∈
◦
W 1

p(Ω). In particular, given p > 1, we can choose d ≥ N such
that p < d and then apply our results. But of course, the estimates become
weaker the larger we choose d.

4.2. Neumann boundary conditions. We assume that Ω is a bounded
Lipschitz domain and that ∂Ω = Γ2. We can choose Vp := W 1

p (Ω). It is well
known that if N > p, then there exists a constant c depending on N , p and
the domain such that the Sobolev inequality

‖u‖Np/(N−p) ≤ c ‖u‖W 1
p

holds for all u ∈ W 1
p (Ω) (see [18, Théorème 3.4]). We can therefore set

d := N in (2.7) and δ0 := 1 in Assumption 2.2. Hence λ0 = 1 + ‖c−0 ‖∞ > 0,
so the problem is not in general coercive. If γ := min c0 > 0, then

‖u‖pW 1
p
≤ max{1, γ−1}(‖∇u‖pp + γ‖u‖pp) ≤ a(u, u)
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and therefore we can set λ0 = 0 if min c0 > 0, meaning that the problem is
coercive in that case. We can replace N by any d ≥ N and find a constant
also depending on |Ω| such that

‖u‖dp/(d−p) ≤ c ‖u‖W 1
p

for all u ∈W 1
p (Ω).

If Ω is not Lipschitz, then (2.7) can fail for any d ≥ N . An example
is a domain with an outward pointing exponential cusp as shown in [1,
Theorem 5.32]. On the other hand, there are domains for which (2.7) holds
for some optimal d > N . Model examples are again domains with outward
pointing polynomial cusps (see [1, Theorem 5.35]). If p > d, we can simply
increase d since for a domain with finite measure, (2.7) holds for any d larger
than the minimal possible d and then apply our results.

4.3. Robin boundary conditions. Now we suppose that Ω is a domain,
∂Ω = Γ3 and there exists a constant β > 0 such that b0 ≥ β. We then set

Vp := W 1
p,p(Ω, ∂Ω)

which is defined to be the completion of the space

{u ∈W 1
p (Ω) ∩ C(Ω) : ‖u‖Vp

<∞}

with respect to the norm

‖u‖Vp
= (‖u‖pW 1

p
+ ‖u|∂Ω‖pLp(∂Ω))

1/p,

where Lp(∂Ω) is given with respect to the (N − 1)-dimensional Hausdorff
measure. These spaces have been introduced by Maz’ya (see [16, Sec-
tion 3.6]). We prove in the appendix that Assumption 2.1 is satisfied. More-
over, if N > 1, by [16, Corollary 3.6.3] there exists a constant c > 0 just
depending on N (namely the isoperimetric constant) such that

‖u‖N/(N−1) ≤ c(‖∇u‖1 + ‖u|∂Ω‖L1(∂Ω))

for all u ∈ W 1
1 (Ω) ∩ C(Ω) for which the right hand side is finite. Replacing

u by |u|p, we get

‖u‖pNp/(N−1) ≤ c
(
p‖|u|p−1|∇u|‖1 + ‖u|∂Ω‖pLp(∂Ω)

)
. (4.1)
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By Hölder’s and Young’s inequalities,

p‖|u|p−1|∇u|‖1 ≤ p‖u‖p−1
p ‖∇u‖p ≤ (p− 1)‖u‖pp + ‖∇u‖pp,

and hence there exists C > 0 only depending on N and p such that

‖u‖Np/(N−1) ≤ C‖u‖Vp

for all u ∈ Vp. Now clearly

Np

N − 1
=

(Np)p

Np− p
,

so if we set d := Np, then (2.7) is satisfied. It was observed in [6] that there
are domains for which the embedding Vp → Lp(Ω) is not injective (see [4]
for an example in the case p = 2) since Vp is only defined as an abstract
completion of a normed space. Hence, we assume that the embedding is
injective and call a domain with that property admissible. For such domains
we get a priori estimates of the type discussed in this paper if we set d = Np.
Note that d > p for all N > 1.

If the domain has finite measure and c0 ≥ 0, then the problem turns out
to be coercive. Indeed, using Hölder’s and Young’s inequality, we have

cp‖|u|p−1|∇u|‖1 ≤ cp|Ω|
1

Np′ ‖u‖p−1
Np/(N−1)‖∇u‖p

≤ c1‖u‖pNp/(N−1) +
1

p
‖∇u‖pp

for some constant c1 only depending on N, p and |Ω|. Rearranging (4.1), we
get a constant C > 0 such that

‖u‖Np/(N−1) ≤ C(‖∇u‖pp + ‖u|∂Ω‖pLp(∂Ω))
1/p. (4.2)

Clearly, ∫

∂Ω

b0|u|p dσ ≥ β

∫

∂Ω

|u|p dσ = β‖u|∂Ω‖pLp(∂Ω)

and hence
‖u‖pNp/(N−1) ≤ Cp max{1, β−1}a(u, u).

We can therefore set d = Np and δ0 = 0 under the above assumptions. This
means that the problem is coercive for every admissible bounded domain if
c0 ≥ 0.
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Finally, note that, for instance, for a domain with an outward pointing
exponential cusp, ‖·‖Vp

is stronger than the W 1
p -norm and thus, by the open

mapping theorem, the space Vp is a proper subspace of W 1
p (Ω). That the

norm is strictly stronger follows from [1, Theorem 5.32] asserting that for
a domain with a sufficiently sharp outward pointing cusp W 1

p (Ω) 	⊂ Lq(Ω)

for all q > p, contradicting (4.2) if we assume that Vp = W 1
p (Ω). The same

applies if Ω is an unbounded domain of finite measure (see [1, Theorem 5.30]).
The notion of admissibility of a domain Ω is closely related to the prop-

erties of its boundary ∂Ω. Roughly speaking, if the boundary ∂Ω is “wild”
in a certain sense, there exists a function w ∈ Vp such that w 	= oVp

but
w = oLp(Ω). Here, oVp

and oLp(Ω) denote the zero elements in Vp and Lp(Ω),
respectively. Notice that this cannot happen if the trace of a function from Vp

is locally defined in a usual sense up to a set of (N−1)-dimensional Hausdorff
measure zero. It follows from Arendt and Warma [4] that the admissibil-
ity of Ω is not essential restriction on the domain Ω (cf. also Biegert [5]
and Daners [6, Sec. 3]). An example of a bounded domain which is not
admissible is constructed, e.g., in [4, pp. 357 and 358]. One can see that the
domains of this kind are rather special. In fact, most of the domains which
appear in applications do not possess such complicated structure and, due
to our approach, we can go “far beyond” the class of Lipschitz domains.

5. Existence and compactness of the resolvent

In this section we look at existence and compactness of the resolvent to the
problem (2.1) under the Assumptions 2.1 and 2.2. We also assume that Ω is
bounded, that the problem is coercive, and that the embedding

Vp ↪−↪→ Lp(Ω)

is compact. (We write ↪−↪→ for a compact embedding.) We prove that the
solution operator T−1 : Lr(Ω) → Vp ∩ L∞ exists for all r > d/p and that it
is continuous and compact as an operator into Vp ∩Ls(Ω) for all s ∈ (1,∞).
Compact means that it maps bounded sets onto relatively compact sets. We
start by constructing the solution operator. By our assumptions, there exists
c > 0 such that

|a(u, v)| ≤ c ‖u‖p−1
Vp
‖v‖Vp

(5.1)

for all u, v ∈ Vp. In particular, this shows that for every fixed u ∈ Vp the
functional v �→ a(u, v) is an element of the dual space V ′p . Hence, for each
u ∈ Vp there exists T (u) ∈ V ′p such that

〈T (u), v〉 = a(u, v)

kniha_Institute_of_Mathematics_v30   30kniha_Institute_of_Mathematics_v30   30 7.9.2011   9:45:177.9.2011   9:45:17



QUASILINEAR ELLIPTIC PDE’S I 23

for all u, v ∈ Vp and it therefore defines an operator T : Vp → V ′p . This map
is continuous essentially because the superposition operator associated with
the function g(ξ) := |ξ|p−2ξ is continuous from Lp(Ω) to Lp′(Ω) and also
from Lp(Γ3) to Lp′(Γ3) (see [9, page 188]). The monotonicity of g implies
that T is a monotone operator and the assumption on the coercivity of the
problem guarantees that T is a coercive operator as well. We show that T
is bounded, that is, it maps bounded sets of Vp onto bounded sets in V ′p . By
definition of the dual norm and (5.1),

‖T (u)‖V ′p = sup
‖v‖Vp=1

|〈T (u), v〉| = sup
‖v‖Vp=1

|a(u, v)| ≤ c sup
‖v‖Vp=1

‖u‖p−1
Vp
‖v‖Vp

and thus T is bounded. It follows from the Browder theorem (see [10, The-
orem 5.3.22]) that T (Vp) = V ′p , that is, T maps Vp onto V ′p . We next prove

existence, continuity and boundedness of the operator T−1 also between
Ls-spaces.

Theorem 5.1. Suppose that Assumptions 2.1 and 2.2 hold and that c0, b0 ≥
0. Then T−1 : V ′p → Vp exists, is bounded and continuous. Moreover, if

r > d/p, then T−1 : Lr(Ω) → L∞(Ω) is bounded and T−1 : Lr(Ω) → Ls(Ω)
is bounded and continuous for all s ∈ [1,∞).

Proof. Since the map ξ → |ξ|p−2ξ is strictly monotone, it follows that

(|ξ|p−2ξ − |η|p−2η)(ξ − η) > 0 (5.2)

for all ξ 	= η. Hence, by the coercivity of the problem and the definition of
T and a(u, v), it follows that

〈T (u)− T (v), u− v〉 > 0

for all u, v ∈ Vp with u 	= v. Note that the only possibility for the above
expression to be zero is if ∇u = ∇v = 0 almost everywhere and c0 = b0 = 0.
But then the problem is not coercive, contrary to what we assumed. Hence,
T is injective and T−1 exists. The coercivity implies also the existence of
a constant C > 0 such that

C‖u‖pVp
≤ a(u, u) = 〈T (u), u〉

for all u ∈ Vp. Hence, if u ∈ Vp is the weak solution of (2.1) with f ∈ V ′p ,
then

C‖u‖pVp
≤ 〈T (u), u〉 = 〈f, u〉 ≤ ‖f‖V ′p‖u‖Vp
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and since u = T−1f ,

‖T−1(f)‖p−1
Vp

≤ C−1‖f‖V ′p

for all f ∈ V ′p . Thus T
−1 is bounded on V ′p .

We next show that T−1 is continuous on V ′p . From Hölder’s inequality
and (5.2) we get

〈T (u)− T (v), u− v〉

≥
∫

Ω

(|∇u|p−2∇u− |∇v|p−2∇v) · (∇u−∇v) dx

= ‖∇u‖pp + ‖∇v‖pp
−
∫

Ω

|∇u|p−2∇u · ∇v dx−
∫

Ω

|∇v|p−2∇v · ∇u dx

≥ ‖∇u‖pp + ‖∇v‖pp − ‖∇u‖p−1
p ‖v‖p − ‖∇v‖p−1

p ‖u‖p
=

(
‖∇u‖p−1

p − ‖∇v‖p−1
p

)(
‖∇u‖p − ‖∇v‖p

)

(5.3)

for all u, v ∈ Vp. Similarly, for all u, v ∈ Vp,

〈T (u)− T (v), u− v〉 ≥ (‖c1/p0 u‖p−1
p − ‖c1/p0 v‖p−1

p )

× (‖c1/p0 u‖p − ‖c1/p0 v‖p)
(5.4)

and if Γ3 	= ∅,

〈T (u)− T (v), u− v〉 ≥ (‖b1/p0 u‖p−1
Lp(Γ3)

− ‖c1/pb v‖p−1
Lp(Γ3)

)

× (‖b1/p0 u‖Lp(Γ3) − ‖b
1/p
0 v‖Lp(Γ3)).

(5.5)

Assume to the contrary that T−1 is not continuous. Then there exist fn ∈ V ′p
with fn → f in V ′p and δ > 0 such that

‖T−1(fn)− T−1(f)‖Vp
≥ δ (5.6)

for all n ∈ N. Set un := T−1(fn) and u := T−1(f). As (fn) is a bounded
sequence and T−1 is bounded, the sequence (un) is bounded in Vp. By the
reflexivity of Vp (see Remark 2.2), it has a weakly convergent subsequence
and so renumbering it, we can assume that (un) converges weakly to some
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ũ ∈ Vp. Since by assumption T (un) − T (ũ) → f − T (ũ) strongly in V ′p and
un − ũ ⇀ 0 weakly in Vp, we get

〈T (un)− T (ũ), un − ũ〉 → 0

as n→∞. Setting u = un and v = ũ in (5.3)–(5.5), we conclude that

a(un, un) = ‖∇un‖pp + ‖c1/p0 un‖pp + ‖b1/p0 un‖pLp(Γ3)

−→ ‖∇ũ‖pp + ‖c1/p0 ũ‖pp + ‖b1/p0 ũ‖pLp(Γ3)
= a(u, u).

By the coercivity, a(u, u)1/p is a strictly convex equivalent norm on the
uniformly convex Banach space Vp, showing that un → ũ strongly in Vp.
Since T is continuous, fn = T (un) → T (ũ) = f and by injectivity ũ = u.
This means that

‖T−1(fn)− T−1(f)‖Vp
= ‖un − u‖Vp

→ 0

contradicting (5.6). Hence, T−1 is continuous on V ′p as claimed.

To show that T−1 : Lr(Ω) → L∞(Ω) is bounded let B ⊂ Lr(Ω) be
bounded. From Theorem 2.5 we know that ‖T−1(f)‖∞ ≤ C‖f‖r for some
constant C independent of f ∈ Lr(Ω). Hence, the image of B under T−1 is
bounded in L∞(Ω).

We finally show that T−1 : Lr(Ω)→ Ls(Ω) is continuous for all s ∈ [1,∞).
Since Vp ↪→ Ldp/(d−p)(Ω), it is sufficient to look at s ≥ dp/(d− p). Suppose
now that r > d/p and let (fn) be a sequence in Lr(Ω) with fn → f in
Lr(Ω). Then as shown above, the sequence T−1(fn) is bounded in L∞(Ω).
Also T−1 : Lr(Ω) ↪→ V ′p → Vp ↪→ Ldp/(d−p)(Ω) is continuous. Hence, if
s ∈ [dp/(d− p),∞), then by interpolation, for some τ ∈ (0, 1],

‖T−1(un)− T−1(u)‖s
≤ ‖T−1(un)− T−1(u)‖τdp/(d−p)‖T−1(un)− T−1(u)‖1−τ

∞

≤ C‖T−1(un)− T−1(u)‖τVp
→ 0

as n→∞, by continuity of T−1 as a map into Vp. This concludes the proof
of the theorem. �
Theorem 5.2. Suppose that Assumptions 2.1 and 2.2 hold and that c0, b0 ≥
0. Let f ∈ Lr(Ω), f 	= 0, f ≥ 0 a.e. in Ω, r > d/p. Then problem (2.1)
has unique weak solution u ∈ L∞(Ω) ∪C1,α(Ω) for some α ∈ (0, 1) which is
strictly positive in Ω.

Proof. The existence of unique weak solution u ∈ L∞(Ω)∪Vp follows from
Theorem 5.1. Theorem 2.8 implies that u ∈ C1,α(Ω) for some α ∈ (0, 1) and
Theorem 2.9 forces u > 0 everywhere in Ω. �
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We next look at the compactness of T−1.

Theorem 5.3. Suppose that Assumptions 2.1 and 2.2 hold and that c0, b0 ≥
0. Then the solution operator T−1 : Lr(Ω) → Vp ∩ Ls(Ω) is compact for all
r > d/p and s ∈ (1,∞).

Proof. By Theorem 5.1, T−1 : V ′p → Vp exists and is bounded and contin-
uous. By assumption and interpolation, we have

Vp ↪−↪→ Lt(Ω)

for 1 < t < dp/(d− p) and therefore by duality,

Lr(Ω) ↪−↪→ V ′p

for all r > dp′/(d + p′) (and hence also for r > d/p). Hence, by continuity
and boundedness of T−1 : V ′p → Vp, it follows that

T−1 : Lr(Ω)→ Vp

is compact for r > dp′/(d + p′) (and hence also for r > d/p). We now
show that T−1 is also compact as a map into Ls for s ∈ (1,∞). From
Theorem 5.1 we know that T−1 is bounded. We need to show that the
image of every bounded set B ⊂ L∞ is relatively compact in Ls(Ω) for 1 <
s < ∞. For that it is sufficient to show that every sequence in T−1(B) has
a convergent subsequence in Ls(Ω). Hence, let (un) be a sequence in T−1(B).
Let fn := T (un) ∈ B and note that because B is bounded, the sequence (fn)
is bounded. We have already seen that T−1 is a compact map into Vp, so
there is a subsequence (fnk

) such that T−1(fnk
) → u in Vp. Renumbering

the sequence, we can assume that un = T−1(fn) → u in Vp and therefore
in Lp(Ω). It remains to show that un → u in Ls(Ω). Let now s ∈ (p,∞).
Then, as (un) is bounded in L∞(Ω), a standard interpolation inequality (see
also the proof of Lemma 3.5) implies that there exists τ ∈ (0, 1) such that

‖un − um‖s ≤ ‖un − um‖τp‖un − um‖1−τ
∞ ≤ 2C‖un − um‖τp

for all n,m ∈ N. As (un) converges in Lp(Ω) we conclude that (un) is
a Cauchy sequence in Ls(Ω) and therefore converges in Ls(Ω). Hence,
T−1 : Lr(Ω) → Ls(Ω) is compact for s ∈ [p,∞). For s ∈ (1, p) simply
observe that Lp(Ω) ↪→ Ls(Ω) because Ω has finite measure. �
Remark 5.4. In general, we do not expect T−1 : Lr(Ω) → L∞(Ω) to be
compact. The reason is that Vp ↪→ Ldp/(d−p)(Ω) is not compact if d ≥ N is
optimal. At least in the linear case there is a converse of the a priori estimates
which would imply compactness of the embedding (see [7, Section 6]).
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Appendix A. Plausibility of Assumption 2.1

The purpose of this appendix is to establish a general criterion to show that
ψα,t ◦ u ∈ Vp for all u ∈ Vp (the final requirement in Assumption 2.1) for a
large class of problems, in particular for the boundary conditions considered
in Section 4. The criterion applies in a similar manner to more general mixed
problems.

Proposition A.1. Suppose that Vp is a Banach space such that (2.4), (2.5)
hold, and that (2.6) is an equivalent norm on Vp. If ψα,t ◦ u ∈ Vp for
all u in a dense subset of Vp, then ψα,t ◦ u ∈ Vp for all u ∈ Vp, that is,
Assumption 2.1 is satisfied.

Proof. By the definition of ψα,t we clearly have

|ψα,t ◦ u| ≤ tαt−1|u|.

Also, by (3.4),
|∇(ψα,t ◦ u)| ≤ tαt−1|∇u|.

Now assume that W ⊂ Vp is a dense set such that ψα,t◦u ∈ Vp for all u ∈W .
Hence, by the definition of the norm (2.6) and the above,

‖ψα,t ◦ u‖Vp
≤ tαt−1‖u‖Vp

(A.1)

for all u ∈ W . Given u ∈ Vp, there exist un ∈ W such that un → u in Vp.
Clearly, ψα,t is Lipschitz with

|ψα,t(ξ)− ψα,t(η)| ≤ tαt−1|ξ − η|

and thus ‖ψα,t ◦ un − ψα,t ◦ u‖p ≤ tαt−1‖un − u‖p for all n ∈ N. Hence,
ψα,t ◦un → ψα,t ◦u in Lp(Ω). By (A.1), the sequence (ψα,t ◦un) is bounded
in Vp and therefore ψα,t ◦ un ⇀ ψα,t ◦ u weakly in Vp. In particular, this
implies that ψα,t ◦ u ∈ Vp. �

We now apply the above to the standard examples. First, if Vp = W 1
p (Ω),

then ψα,t ◦ u ∈ W 1
p (Ω) for all u ∈ W 1

p (Ω). This covers the examples of the
Neumann problem and also the Robin problem on a Lipschitz domain.

Next we look at the Dirichlet problem. We know that W := Cc(Ω) ∩
W 1

p (Ω) is dense in
◦
W 1

p(Ω). From the above and the continuity of ψα,t we

clearly have ψα,t ◦u ∈
◦
W 1

p(Ω) for all u ∈W and therefore for all u ∈
◦
W 1

p(Ω)
by the above proposition.
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We finally consider the space Vp := W 1
p,p(Ω, ∂Ω) which, as defined in the

Section 4, is the completion of the space

W := {u ∈W 1
p (Ω) ∩ C(Ω) : ‖u‖Vp

<∞}

with respect to the norm

‖u‖Vp
=

(
‖u‖pW 1

p
+ ‖u|∂Ω‖pLp(∂Ω)

)1/p
.

Since |ψα,t ◦u| ≤ tαt−1|u| on Ω, it follows that ψα,t ◦u ∈W 1
p,p(Ω, ∂Ω) for all

u ∈W , and thus, by definition of W 1
p,p(Ω, ∂Ω) and by the above proposition,

for all u ∈W 1
p,p(Ω, ∂Ω).
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[9] P. Drábek: Solvability and bifurcations of nonlinear equations. Pitman Research
Notes in Mathematics Series, 264. Harlow, Essex: Longman Scientific & Technical,
1992. Zbl 0753.34002, MR1175397.
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