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Hurewicz Scheme 

MICHAL STAŠ 

Košice 

Received 30. March 2008 

We present a simple proof of Hurewicz theorem saying that every coanalytic non-Gf5-set 
C in a Polish space contains a countable set L c= C without isolated points such that 
(L \L)nC = 0. 

Hurewicz theorem mentioned in the abstract has many important consequences, 
e.g., every analytic space with property £* is a-compact [2] or the Kech-
ris-Louveau-Woodin Dichotomy Theorem [3]. The original proof by W. Hurewicz 
[1] based on the notion of a "Haufungsystem" is elementary, however rather 
complicated. A. Kechris [3] presents a proof based on game theory. 

Main goal of this note is a simple elementary proof of a generalization of 
Hurewicz theorem. Actually we follow the original Hurewicz proof. We shall use 
common set theoretical terminology and notations, say those of [4], In the next we 
assume that (X9 Q) is a Polish space with a countable base Si = {Vn:ne co] of open 
sets. We use a little modified notion of a "Haufungsystem". 

Let "co be the set of finite sequences v = (v (0),..., v (n — 1)) of length n from co. 
If venco and m < n9 we let v\m = (v(0)9...9v(m — 1)). Let u be a finite 

sequence from co of length at least n. We shall write v < u if v = u\n. 
A mapping cp : <wco -> X is called a Hurewicz scheme on X if 
(1) (Vue <<0co)(ym9n e co)(m ^ n -» <p(iOn) + cp(v^n))9 
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(2) (Vu G <wco) cp (v) = lim^oo cp (v^n), 
(3) (Vt> G <coco) lim^^oc diam {cp(u):u > v^k} = 0, 
(4) (V /G "CD) lim^oo diam (<P(M) : M > f\k} = 0. 
The following result describes a basic property of a Hurewicz scheme. 

Lemma 1. If cp is a Hurewicz scheme on X and x e rng(<D) \rng (cp), then there 
exists a branch fe (DCD such that x = l i m ^ ^ cp(f\k). 

Proof Assume that x G rng (cp) \rng (cp). Let {x^Lo be a sequence of rng (cp) and 
{n.}«i() a sequence of elements of <wco such that xn -> x and x„ = <P(M„), n G GD. 

Denote 

T = {uG <UJco : (3n e CD) v < un}. 

We show that the tree 7" has finite branching degree. Assume not, i.e. there exists 
a node ve T and an increasing sequence {^}^L0 such that tOwk e T. Then for 
every k there exists nk such that v^mk < uilk. Since 

g(cp(v\cp(unk)) < g(cp(v),cp(v^mkj) + diam {cp(u):u > iOn f c}, 

by (2) and (3) we obtain x = lim^^ cp(uni) = cp (v) e rng (cp) — a contradiction. 
By Konig's lemma there is an infinite branch fe (,)OJ for which {f\k:keco} £. T. 

Let nk be such that /|fc < unk. By (4) l i m ^ ^ £?((/)(/|fc), cp(unk)) = 0 and therefore 
x = lim^^ cp(f\k). 

q.e.d. 
Let A, B be sets such that A ^ B. A set C separates ,4, B if _4 ^ C £ B. 

Lemma 2. Let A, B c X and let U ^ X be an open set such that A n [7 c B. 
If A r\U,B cannot be separated by an F a-sety then there exist infinitely many 
points p G U\B such that for every neighborhood V ofpy the sets A r\V,B cannot 
be separated by an FG-set either. 

Proof Assume there is no such point p e U\B. Let 

S = {ne co): (Vn ^ 17) A (A n VmB can be separated by an Fff-set)}. 

For each ne S let us choose an F^-set Fn which separates A n VmB and let us 
denote W= [jnGS Vn and F = [JneSFn. Since U\B ^W^UmdAnW^F^ 
c B, the F^-set (F n U) u (£7\ W) separates A n 17, B, what is a contradiction. 
If 17 had only finitely many points with the desired property, eliminating them 
from U you obtain a contradiction. 

q.e.d. 

Theorem 3. Let A be an analytic subset of X. For every set B with A c= B c= X 
the following are equivalent: 

i) A, B cannot be separated by an Fa-sety __ 
ii) there is a countable L <= X\B without isolated points such that L\L<^ A. 
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Proof. Assume that i) holds true. Since A is analytic (see [4]), there exists 
a closed Suslin scheme <a)(jo,\jj, with vanishing diameter such that 

UfWl") = -̂
fe0i(i) nea) 

We can assume that u < v -> \jj (u) =2 i/t (v) for any u, v e <ww. For every v e <CDw 
denote 

Av={j{f]il){f\n):fe'"wAv^f}. 
new 

We construct functions cp : <(0co : -> X and F : <wOj -» <wco such that 
a) (D is a Hurewicz scheme on I \ B , 
b) F preserves ordering on <W<D, 

c) (p(v)e\l/ (F (v))\AF{v) for any v e <a)w, 
d) there is no Fff-set separating AF(v) n U9B for any neighborhood U of cp (v). 

Apply Lemma 2 for 17 = X and fix peX\B from the conclusion. Therefore 
pe A\A _= il/(0)\A. Weset(/>(0) = pandF(0) = 0. Let s e kw and <p (8), F (s) be 
already defined and satisfy c), d). Fix n e co. Since AF^ = [jmAF^m and 

U = BJ(p{s),2-l}J
s{i)+1)-" 

is a neighbourhood of <p (s), there exists an m e co such that AF^m n U9B cannot 
be separated by an Fff-set. Let p e U\B be that of Lemma 2. We set cp (s^n) = p 
and F(s^n) = F(s)^m. We can assume that cp(s^w), new, are mutually distinct. 
If u > s^n then 

8 ( p ( s ) , ? ( M ) ) < r ^ - - , 

Moreover, by d) we have _____ 
<p (s^n) e AF{rn) ___ i// (F (s^n)). 

Thus, cp is a Hurewicz scheme on X\B such that 

lim<p( f |n)6n'A(I7( f l«))^'4, 
/.-»oo /iew 

for any branch fe(,)w and thus the set L = rng(co) satisfies ii). 
Assume that i) does not hold true while ii) does. Then there exists a G -̂set 

G separating X\B9 X\A. Since G is a Polish subspace L is not closed in G and 
therefore (L\L) n G ^ 0, which is a contradiction. 

q.e.d. 

Corollary 4 (W. Hurewicz). If C is a coanalytic non-G6-set in a Polish space 
then there exists a countable set L<^ C without isolated points such that 
(L\L) nC = Q. 
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Proof. Take A = B = X\C. 
q.e.d. 
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