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This paper is a survey of the series of talks given by the author in the 36th Winter School 
in Abstract Analysis under the title "The Krein-Smulian Theorem and its extensions". 
Some results of this work are new but the mam part of them is taken from the papers 
[12] —[19]. We investigate here whether, given a Banach space X and a convex subset 
C of the dual X*, the distance dist(co"*(K),C) := sup {inf{||k - c\\ ; c e C) : k e 
ecou'*(K)} from covv*(K) to C is controlled by the distance dist(K, C), that is, if 
dist (cow* (K), C) < Mdist(K, C) for some constant 1 < M < oo not dependent on K, 
where K is any weak* compact subset of X*. Actually, all the results obtained extend 
in some way the classical Krein-Smulian Theorem and this fact justifies the title of the 
present work. 

1. Introduction 

This paper is a survey of the series of talks given by the author in the 36lh Winter 
School in Abstract Analysis under the title "The Krein-Smulian Theorem and its 
extensions". The main part of this work is taken from the papers [12] — [19]. In all 
these papers we investigate whether, given a Banach space X and a convex subset 
C of the dual X*, the distance 

dist (covv* (K), C): - sup {inf {||/c -c\\:ceC}:ke covv* (K)} 
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from covv*(i£) to C is controlled by the distance dist (K9C)9 that is, if 
dist (ccT* (K)9 C) < M dist (K9 C) for some constant 1 < M < oo not dependent on 
K9 where K is any weak* compact subset of X*. Actually, all the results obtained 
in the above papers extend in some way the classical Krein-Smulian Theorem and 
this fact justifies the title of the present work. Recall that this theorem, with the 
terminology of distances, states the following (see [8, p. 29]): if X is a Banach 
space and K a weak* compact subset of X** such that dist(K9X) = 0 (that is, 
K is a weak compact subset of X)9 then dist (covv* (K)9 X) = 0, that is, 
co^-K) c X and so cow*(K) is a weak compact subset of X and 
covv*(K) = co(K). Thus, looking at the Krein-Smulian Theorem with the termino­
logy of distances, it is natural to ask the following: 

Question 1. If X is a Banach space and K a weak* compact subset of X**, 
does the equality dist (cow* (K)9 X) = dist(K9X) always hold? 

The answer is negative. Actually, we construct in Section 3 counterexamples 
such that dist(cow*(X),X) > 3dist(&,X) > 0. 

Question 2* Does there exist a universal constant 1 < M < oo such that 
always dist (cow* (K)9 X) < Mdist(K9X) for every weak* compact subset 
K cz X**? 

The answer is affirmative. Actually, it holds true the following result, which 
extends the Krein-Smulian Theorem: if K is a weak* compact subset of X** and 
Z a convex subset of X, then dist (covv* (K)9 Z) < 5dist(K,Z); moreover, if Z n K 
is weak* dense in K9 then dist (covv* (K)9 Z) < 2dist(K,Z). However, for many 
Banach spaces X the equality dist (covv* (K)9 Z) = dist (K9 Z) holds true for every 
convex subset Z cz X and every weak* compact subset K of X** as we will see 
later on. 

We go a step further and investigate the control of the distance dist(covv*(&), C) 
by the distance dist(K,C) when C is a convex subset of a dual Banach spaces 
X* and K is a weak* compact subset of X*. The behavior of the distance 
dist (cow* (K)9 C) with respect to the distance dist (J£,C) varies. If C is a weak* 
closed convex subset of X*, it is very easy to see that dist (covv* (K)9 C) = 
= dist(X, C). However, if C cz X* is not weak* closed, all situations are possible. 
In any case, as we will see later, the control of C inside X* and the existence in 
C of a copy of the basis of £\ (c) are closely connected. 

The paper is organized as follows. 
m In Section 2 we study the control of the convex subsets C of a Banach space 

X inside its bidual X**. 
# In Section 3 we construct some counterexamples, namely, two weak* 

compact subsets K]9K2 of a bidual Banach space X** such that: (i) Ki n X 
is weak* dense in Ku dist(KhX) = \ and dist(covv*(Xi),X) = 1; (ii) 
dist(.K2,*) = \ and dist(covv*(K2),X) = 1. 
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m In Section 4 we study the control of convex subsets of a dual Banach space 
X* inside X*. 

m The Section 5 is devoted to study the class of universally Krein-Smulian 
Banach spaces. 

m In Section 6 we study the convex weak*-closures versus the convex 
norm-closures in dual Banach spaces. 

# The section 7 is devoted to study the control of X inside its bidual X** when 
X is an 1-unconditional direct sums of Banach spaces and a Banach lattice. 

# In section 8 we study the control of some convex subsets of the dual space ^ (I). 
Our notation is standard. If A and / are sets, a e A1 and i e I then at (or a(i)) denotes 
the i-th coordinate of a and 71,: A1 -> A the f-th. projection mapping such that 
ni(a) = af. \I\ is the cardinality of I and c : = \U\. ft I denotes the Stone-Cech 
compactification of I (the set I is endowed with the discrete topology) and 
J* := /IN. If f: I -> U is a bounded function, then fe C(fil) is the Stone-Cech 
continuous extension of / to the all pi. 

We shall consider only Banach spaces over the real field. If X is a Banach space, 
let B(a; r): = {x e X : ||x — a\\ < r} be the closed ball with center at a e X and ra­
dius r > 0. B(X) and S(X) will be the closed unit ball and unit sphere of X, respect­
ively, and X* its topological dual. If A is a subset of X, then [A~] and \A\ denote 
the linear hull and the closed linear hull of A, respectively. A subset A of the Banach 
space X is said to have a copy of the basis of £\ (c) if A contains a family of vectors 
{a(: i < c} which is equivalent to the canonical basis of t\ (c). The weak* topology 
of the dual Banach space X* is denoted by w* and the weak topology of X by w. 
If A is a subset of X*, co(A) denotes the convex hull of the set A, co(A) is the 
|| • ||-closure of co(A) and coM'*(,4) the w*-closure of co(yl). Given 1 < M < oo, 
a convex subset C of X* is said to have M-control inside X* if dist (cow* (K)9 C) < 
< Mdist(K,C) for every w*-compact subset K of X*. C is said to have control 
inside X* if C has M-control inside X*, for some constant 1 < M < oo. 

If K is a w*-compact subset of a dual Banach space X* and \i a Radon Borel 
probability on K, then r(/i) will denote the barycenter or resultant of fi (see 
[7, p. 115]). Recall that: (i) r (Li) e covv* (K); (ii) x* ECOVV*(K) if and only if there 
exists a Radon Borel probability n on K such that r(ji) = x*; (iii) r([i)(x) = 
= jx x* (x) dfx (x*) for all x e X. 

We refer the reader to the book [10] for the definition and properties of weakly 
compactly generated (WCG) and weakly Lindelof determined (WLD) Banach spaces. 

2. The con t ro l of convex subse ts of X ins ide X** 

The convex subsets of a bidual Banach space X**, in general, fail to have 
control inside X**. For example, if X is a Banach space such that X* contains 
a copy of f̂i, then there exists a w*-compact subset H of X** such that 
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cUst(cow*(.Hr),co(if)) > 0 (see [20]). However, when we restrict ourself to the 
OOiivex subsets C of the Banach space X, we will see in this section that there 
exists control inside X**. We begin with the calculation of the distance dist(x, C), 
when C is a convex subset of a Banach space X and x e X. 

Lemma 2.1. Let X be a Banach space, C a convex subset of X and x e X. 
Then the distance dist (x, C) from x to C satisfies 

dist(x, C) = sup inf {|<p(x — c)\: c e C}. 
cpeS(X*) 

Moreover, if x $ C, then even dist (x, C) = sup^**) inf <p(x — C). 

Proof If we assume that x $ C, the proof of the statement is a simple 
application of Banach separation theorem. If x e C, then for every <p e S(X*) we 
have inf {\cp(x — c)\ : c e C } = 0, whence 

dist(x, C) = 0 = sup inf {|<D(x — c)\: c e C}. • 
q>eS(X*) 

The following lemmas are basic for the proofs of next propositions. 

Lemma 2.2. Let X be a Banach space and D a convex subset of X. Then for 
every z e Dw* c X** we have: 

dist(z,D) < 2dist(z,X). 

Proof Suppose that dist (z, D) > 2dist (z, X). Then 
(i) for some a > 0 we have dist (z, D) > 2a > 2dist (z, X) and 

(ii) there exists a vector w e X such that ||w — z|| < a (because dist(z,X) < a) 
and so dist (w,D) > a (otherwise, if dist (w,D) < a, we would get dist (z,D) < 
< ||w — z\\ + dist(w,D) < 2a, a contradiction). 

Since dist (w,D) > a, by Lemma 2.1 there exists x*eS(X*) such that 
inf {x*(w — d): d e D} > a. Let {4},e/ <-= D be a net such that dt •™WJL> z. Then 
w — di w* > w — z and so x* (w — d/) > x* (w — z). Hence x* (w — z) > a 
and so \\w — z|| > a, a contradiction. Thus, we get dist(z,D) < 2dist(z,X). • 

Lemma 2.3. Let X be a Banach space, C a convex subset of X*, K a w*-com­
pact subset of X* and assume there exist two numbers a, b > 0 such that: 

dist(K,C) < a <b < dist (co»* (K), C). 

Then there exist z0 e covy* (K) and \jj e S(X**) with inf ^ (z0 — C) > b such that, if 
fi is a Radon probability on K with barycenter r (n) = z0 and H = supp (fi) is the 
support of /i, for every w*-open subset V of X* with Vn H 4= 0 there exists 
£ e cow* (Vn H) such that inf i/stf- C)>b. 

Proof Without loss of generality, we suppose that K a B(X*). Choose 
z e cow*(JC) such that dist(z, C) > b. By Lemma 2.1 there exists i/I e S(X**) such 
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that inf i/t (z — C) > b + e for some a > 0, that is, i/> (z) > b + e + sup i/t (C). By 
the Bishop-Phelps Theorem, there exists a vector cj) e S(X**) with Wij/ •— (j)\\ < e/4 
such that <fi attains its maximum on cow* (K) at some point z0 e cow* (K). So: 

</>(z0) > <£(z) - i/t(z) + (0 - ^f)(z) > sup \/J(C) + b + e - - £ = (2.1) 
3 

= sup i/t (C) + b + j e, 

whence we get 

3 1 1 
\j/(z0) = (j)(z0) + (i/> — (j))(z0) > sup\j/(C) + b + --e — ~e = sup^(C) + 6 + - e , 

that is, 

i n f ^ ( z 0 - C ) > fc + ^ £ . (2.2) 

Thus dist(z0, C) > h + \e and so z0 <£ C and z0$K (because dist(J£, C) < a < h). 
Let ii be a Radon probability on K with barycenter r (/i) = z0 and let II : = supp (//) 
be the support of [i. Assume that there exists a w*-open subset V of X* with 
Vn II # 0 such that inf I/J (£ - C) < b (that is, \j/ (£) < b + sup ijj (C)) for every 
^ 6 -̂ w* /^T/n fjy L e t ^ = ^ f Vn II denote the restriction of /i to Vn II, that is, 
li\ (B) = [i(B n Vn II) for every Borel subset B cz K. Let fi2:= [i — fx\. Observe 
that fi\ and JJL2 are positive measures such that 

(i) fi\ ?-= 0, because 0 ^ Vn II = Vn supp(^), and 
(ii) fi2 ifc 0 because, if we assume \i2 = 0 (that is, /i = /ii = \i\ Vn II)9 then 

z0 = r(fi) e covv*(Vn II) and so inf \jj(z0 — C) < b, a contradiction to (2.2). 
Thus, we have the decomposition \i = \i\ + ji2 such that 1 = | | / j | | = \\ji\\\ + 

+ II/12II with ||/ii|| 7̂  0 # ||JU2||. So, we can write: 

i \ II II / & \ . II II / ^ 2 

Zo = r(ju) = \\in\\ • r -—- + \\ii2\\ • r -—-
VIlMill/ Ml /^ l 

Since r ^ ^ ) e c o ^ K n II), then ij/(r(^)) < h + sup i/t(C) by hypothesis. Hence 
<j6(r̂ 7u)) < & + ^e + supi/I(C) (because ||i/> — (j)\\ < e/4). Thus, taking into 
account that r(^)ecow*(K)9 $(r(j^)) < (j)(z0) and (2.1), we get 

*w = i"'i*HiSi)) + "*«*('(ra[))s 

< ||jui||(& + je + sup^(C) j + \\fi2\\(j)(z0) < ||/ii||$(zo) + \\fi2\\(j)(z0) = (j)(z0), 

a contradiction, and this completes the proof. • 

Proposition 2.4. Let X be a Banach space, C a convex subset of X and 
K a w*-compact subset of X**. Then 

dist(cQw*(K\C) < 5dist(K,C). 
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Proof. Without loss of generality, we assume that 0 e C. Suppose that the 
statement is not true and try to get a contradiction. So, assume that there exists 
a w^-compact subset K of X** and two real numbers a,b > 0 such that 

dist(covv*(&),C) > b > 5a> 5dist (_C, C). 

From Lemma 2.3 we have the following Fact: 

F a c t There exists a functional \j/eS(X***) and a w*-compact subset 
0 # H cz K such that for every w*-open subset Kwith Vn H # 0 there exists 
f e cow* (Vn H) with inf ijj(£ - C)> h. 

Now we do the following construction step by step: 

Step 1. Let Do = {0}. Applying the Fact to the w*-open subset V0 := X**, we 
choose a vector £i ecovv*(II) such that inf ^(£i — C) > b. So, ij/(^\) > b + 
+ sup \jj (Do) = b. As B (X*) is w*-dense in B (X***\ there exists xf e S (X*) such 
that xf(6) >b + maxxf(Do) = b. Let Wx:= {ueX**: <u,xjf> > 6 + maxxf(D0) = 
= b}. Clearly, W\ is a w*-open halfspace of X** such that £\ e W\ n cow*(H). 
Thus, W\ n H # 0 and so we can find a vector r\\ e W\ n H. Since 
dist(r/i,C) < a, we have the decomposition r\\ = n/| + r/? such that / j | e C and 
r/? e aBx**. 

Step 2, Let D- = {f/j} u D0 c C and Kt := PVi n V0 = W\. As 7, is a w*-open 
subset with V] n II # 0, by the Fact there exists a vector £2 e cow*(K! n II) such 
that inf i/t (£2 — C) > b and also inf i/t (£2 — £)-) > inf \j/(^2 •— C) > b because 
D\ cz C. Since Di is finite and mini/t(£2 — D\) > fc, there exists a vector 
x*e S(X*) such that min x*(£2 — D\) > ft, that is, xf(£2) > ft + max x*(Dj). Let 
IV> := {ue X** : (u,xf) > b + max xf(Dj)}. Clearly, FV2 is a w*-open halfspace 
of X** such that £2eW2n covv* (V\ n II). Thus PV2 n Vx n II # 0 and we can find 
r\2sW2r\V\C\H. So, x*(f/2) > fo + max x*(Dj), that is, min x*(f/2 — D\) > b. 
Moreover, min x*(f/2 — D0) > b because f/2e Vx. Since dist(r/2, C) < a, we have 
the decomposition r/2 = r/2 4- r/2 such that r\\eC and f/2 e aB(X**). 

Further, we proceed by iteration. We get the sequences {x,f}„>i c S(X*)5 

W/c>i <= II, D^ = { f i J u D ^ , with ^k = r/i + ^ , f / ieC and tfkeaB(X**) 
k > 1, such that min x*(f//c — />,-_-) > b, for every k > i. 

Let D = co(u^>! D/() c= C and: 

K\ = JfTi>Jf^ cz (K + aB(X**)) n Dw\ 

Let ^0 be a w*-cluster point of {%}k>\. 

Claim 1. dist (r/0, D) < 5a. 

Indeed, clearly ri0eH n (X, + aJ3(X**)). Observe that: 
(i) Since K\ cz K_ + aB(X*% we get dist(K,,C) < dist(K,C) + a < 2a. 

(ii) Since K\ cz Dw\ by Lemma 2.2 we get dist(KbD) < 2 dist(KhK) < 
< 2dist(K,,C) < 4a. 
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Thus, as f]0eKx + aB(X**)9 finally we get dist(?7o,D) < 5a. 

Claim 2. d i s t a l ) ) > b. 

Indeed, let (j) e B(X***) be a w*-cluster point of {*;*}„>!. Since min x*(r\k — 
— Dn_{) > b for every k > n9 then min x*(rj0 — _)„_-) > b9 ¥n > 1. Hence 
inf </>(̂ 0 — D) > b and so dist(r/0,D) > b by Lemma 2.1. 

Since ft > 5a we get a contradiction and this completes the proof. • 

Proposition 2.5. Let X be a Banach space, C a X a convex subset of X and 
K a w*~compact subset of X** such that K n C is w*-dense in K. Then 
dist(cow*(K)9C) < 2dist(K9C). 

Proof Suppose that dist (covv* (K)9 C) > b > 2a > 2dist (i_, C) for some num­
bers a, b > 0. We follow the proof of Proposition 2.4 with the following changes. 
As C n K is w*~dense in K and Vk n H 7- 0, k > 0, then VknC nK ^ 0, 
V/c > 0. Thus, we choose \\k e Vk n K nC9k> 1, and put r\\ = r\k and r\\ = 0. 
Hence, now Kx = {rfk: k > 1}W = {r\k: k > 1}W satisfies Kx a K and so 
dist(K1?C) < dist(K, C) < a, whence we obtain dist(KbI)) < 2a. Finally, every 
w*-cluster point rj0 of {rik:k>l} satisfies ri0eK{9 dist(r/0,D) < 2a and 
dist (r/o, D) > h9 a contradiction. • 

3. C o u n t e r e x a p m l e s 

In this Section 3 we construct a Banach space X and a w*-compact subset 
H cz X** such that dist (covv* (H), X) > 3dist(H,X) > 0. This example together 
with Proposition 2.4 show that the optimal constant 1 < M < 00 such that 
dist(covv*(!V),Z) <Mdist(PKZ), for every Banach space X9 every convex subset 
Z cz X and every w*-compact subset W cz X**9 satisfies 3 < M < 5. We also 
construct a w*-compact subset K cz X** with K n X w*-dense in K such that 
dist(covv*(K),X) > 2dist(iC,X). So, this counterexample together with Proposition 
2.5 show that M = 2 is the optimal constant M such that dist(covv*(IV),Z) < 
< M dist (W9 Z) for every Banach space X9 every convex subset Z cz X and. every 
w*-compact subset FVcz X** with Wn Z w*-dense in W. 

Proposition S*L There exists a Banach space X fulfilling the following facts: 
(A) There exists a w*~compact subset K cz £*(X**) such that KnX is 

w*-dense in K and dist(K9X) = \ but dist(cow* (K)9 X) = 1. 
(B) There exists a w*-compact subset H cz B(X**) such that dist(H9X) = | 

but dist (cow*(H)9X) = 1. 

Proof Let c€ = {0, I f be the Cantor compact set and ^ := {0,1}<N = 
= {0,1} u {0, l}2u { 0 , l f u . . . . Let X be the Haar probability on {0, l f . If 

15 



a = (al5<r2, . - . ) e# and ne N9 we put <rr„ = (r/b<72,..., an)eSf. If v4 cz {0,1}", let 
fA : # -» {0,1} be the continuous mapping 

1, i f < 7 r „ 6 i 4 , 

For each n e N w e define /„ as 

/ n : = {/c={0,l}"withM| = 2 " - n } . 

Observe that /„ is finite and \%fAdX = 1 — nl~n for each fA e In. Let / : = \Jn^Jn. 
Clearly, |/| = K0 and so we can put / = [fAm: m > 1}. We shall identify I with 
N by means of the identification of m andj^w. So, instead of (^ (N) we also write 
<f oo (/). Note that: 

(1) / separates points in c€. 
(2) Since each /„ is finite and \%fAdX = 1 — n2~~n for each fA e Im then 

lirnm^O0\^fAm(a)dX(a) = 1. 
(3) Let fa :j = 1,..., k) be a finite subset of r^. Then for each n > k, there are 

fA,fB£ln such that /i(tJ/) = 0 and/^H) = 1 for each j = I,..., k. Thus, if for 
every ae% we define 0(<j) = {/,€ J : / , (a ) = 0}, then |Qti(fi.)0(<r.-)l = No, 
where ef = ± 1 , (+l)0(crf-) = (9(a) and ( -1) $(<!•) = M)(a). 

(4) For every fA e I there exists a e(£ such that / , (<r) = 1. 

From (3) and (4) we get that the compact set (9 = [)<,& (9 (of1 satisfies 
0 ^ & c J* := pi\L Let ^ : # -> {0,1}7 cz 5(C( / ) ) be the mapping 

Vi=fAeI, \/ae% i/t(<r)(i) = fA(a). 

Clearly i/t is an injective continuous mapping for the w*-topology of 
{0,l}7 cz /a j(/), which coincides with the product topology of {0,l}7. Thus 
D := ijj^) cz {091}7 is a compact subset homeomorphic with c€ such that 
d\(9 = 0, Vd e D. Let /i := ij/(X) be the Radon Borel probability on D that is the 
image of the Haar probability X under the continuous mapping *//, and let 
r (ft) =: z0 G cow* (D) be the barycenter of fi. Clearly, z0e[0,1]7 and so 
0 < z0(p) < 1 for every pefil (recall that z0 is the Stone-Cech continuous 
extension of z0 to the all pi). 

Claim 0, z0(p) = 1 for every p e J* := j8/\/ . 

Indeed, we know that for every i = /^ e / we have 

i > *o ( 0 = ni (r (/*)) = I ^i (*)d/J (-)C) = I %i O «A (<r) ̂  (°") = 

= §J(a)(i)dX(a) = ljA(a)dX(a). 

On the other hand, by (2) limm_,a.J\^fAm(a)dX(a) = 1 and this implies that 
z0(p) = 1 for every p e /*. 
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For each meN (which is associated with fAm e I) we define 

Dm = {deD: nm(d) = 1}, D°m = {de D : nm(d) = 0}, m > 1, 

Km'-^crj ->• IR being the canonical m-th projection. We have ji(Dm) -* 1 and so 
n(Dm) = n(D\Dl

m) -* 0 when m -* oo. Indeed, if m e N, we have 

n(Dm)= ^ nm(x)dn(x) = J 7tm O \p(a)dX(a) = 

= \j(a)(fAm)dX(a)= \fAm(a)dX(a). 
v 6 %> % 

By (2) we know that lim,,,.^\,efAm(a)dk{a) = 1. Thus n(Dl
m) -* 1 when m -+ oo. 

Let X : = {fe €„ (I): f\ 6 = 0}". The dual space X* is 

x* = 4 ( / ) 0 , M ^ (I*,(9), 

MR(I*,&) being the space of Radon measures v on I* such that |v|(<9) = 0 ( 0 , 
means the /,-sum). Actually, /, (!) 0 , MR(I*,&) is a closed complemented 
subspace of ( 4 (/))* = t\ (I) 0 , MR(pi\I). 

The bidual of X is X** = 4 (7 ) 0 K ! MR(I*,&)*, 0 a meaning the 4-sum. 
Let nh n2: X** -* X** be the canonical projections on the summands 4 ( / ) a nd 
MR(I*,0)*, respectively. Observe that the subspaces nx (X**) = 4 ( / ) and 
n2(X**) = MR(I*,(9)* are w*-closed in X**. Moreover, the w*-topology 
a(X**,X*) coincides on nx(X**) = 4 (7) with the a(4.(/),/,(7))-topology. If 
x e X** we put x = (x,, x2), with nx (x) = x, e 4 (l) and 7t2 (x) = x2 e MR (/*, (9)*. 
So, if J : X -* X** is the canonical embedding and fe X, we put J'(f) = (f,f2), 
where f, = 7t, (f) = f and 7r2(f) = f2 satisfies f2(v) = v(f) = J,.\fifciv, for every 
v e MR(I*,C9). Note that the space ($oh(I*,(9), \\ • \\J) of bounded Borel functions 
h : I* -* U vanishing on 0, with the || • ||x-norm, may be considered isometric and 
isomorphically embedded into 7t2(X**) = MR(I*,&)*. Actually, if fex, then 
n2(f)=f2=fe®oh(I*,(9). 

(A) The mapping </>:/«(/) -> X** such that </>(f) = (f,0), V fe4( / ) , is an 
isometric isomorphism between 4 (/) and TTJ (X**), and also an isomorphism for 
the CT(4(/) , 4 (/))-topology of 4 ( l ) and the w*-topology of TC,(X**). Thus 
0(D) = {(d,0) :de D) CZ B(X**) is a w*-compact subset of B(X**) homeomor-
phic with (€. Let 

K := {(f,0) e B(X**): 0 < f < d for some d e D}. 

Clearly K is a w*-compact subset of B (/„(/)) c B(X**) such that 0(D) c K, 
and K nJ(X)w* = K. 

Claim 1. dist(K,J(x)) = { 
Indeed, let (fO)eK. Then ||(/,0) - L

2J(f)\\ = \\(\f -{f)\\ < { Therefore 
dist(K,J(X)) < { On the other hand, given r e f , let I//(T) =:dzeD. Clearly 
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supp(dT) = {ie I: dT(i) = 1} =: AT is an infinite subset. We claim that dist ((dT, 0), 
J(X)) > \. Indeed, otherwise there would exist he X such that ||(eiT,Q) — J(h)\\ = 
== ||(dT,0) — (h9ti)\\ < \. Thus ||dT — h\\ < \ in ^ ( J ) , and this implies \ < h on 
4T. Hence U > \ on ^4/7. Since y4T is infinite, 0 # AT

fjI\I cz J* and every 
p G A/!\I satisfies /?(p) > \. Let <5P be the Dirac probability with mass 1 on p for 
some p e ~AT

[iI\L Observe that 8P e MR (J*, (9) because 0 n "Z?7 - 0. Then 

l((dT,o) - (h9H))(dp)\ = |o - fi(ap)| = | - «(p)| > I 

whence ||(dT,0) — J(h) \\ > \9 a contradiction. Thus dist(K, J(X)) > \. 

Claim X dist(coH'*(JC),J(X)) - 1. 
Indeed, first dist (cow* (K)9 J (X)) < 1 because cow* (K) c B(X**). On the other 

hand, let v : = <fi (ft) be the probability on (/> (J)) cz K image of /i under the continu­
ous linear mapping <p. Then the barycenter r (v) of v belongs to coH* (K) and satisfies 
r(v) = (z0,0), where z0 = r (fi) e B (^ (I)). We claim that dist ((z0,0), J (AT)) > 1. 
Indeed, given li e I , we have /if 0 == 0. On the other hand, z0\ (9 = 1. Thus for 
£ > 0 there exists an open neighborhood Kof (9 in /JJ such that 

VÜ є K ћ(v) < - and z0(u) > 1 e 
Ґ 

In particular, Vi; e F n J, ft(u) < f and z0(i;) > 1 — §, whence we get \\z0 — fc|| > 
> 1 — e, that is, ||(z0,0) — (h,ti)\\ > 1 because e > 0 is arbitrary, and this proves 
that dist((z0,0),J(X)) > 1. 

(B) Let 0 : = tj^e^oh(I*9(9) and let 0>: 4,(7) -> X** be such that 0>(f) = 
= (f +|gf), Vfe^a)(l). O is an injective affine mapping from /^(J) into X**. 
Moreover, O is a continuous mapping for the o-(/x (J), ^, (J))-topology of tf^ (J) and 
the w*-topology of X**. Thus ®(D) = {(d9\g):deD) =: H a B(X**) is 
a w*~compact subset of B(X**) homeomorphic to c€. 

Claim 3, dist (if, J (X)) = \. 
Indeed, let (d9 +\g) e H. Then clearly \\(d9 +\g) - \J(d)\\ = \\(\d9 +\g - \d)\\ < \. 

Thus dist (H9 J (X)) < \. On the other hand, given T e c€9 let \j/ (t) =:dTe D and 
supp(dT) = {iel :dT(i) = 1 } =:_4T, which is an infinite subset. We claim that 
dist((dT, +\g)9J(X)) > \. Indeed, otherwise there would exist feX such that 
\\(dx9+\g)-J(f)\\ = U K - / , +\g-f)\\ < i Thus_||dT - / | | < l i n C ( / ) , a n d 
this implies § < / on AT9 whence / > § on AjjI. Since AT is infinite, 
0 7̂  ~Ar

pi\I c J* and every pe~AT
fu\I satisfies f(p) > \. Let 5P be the Dirac 

probability with mass 1 on some pe"A~T
fu\I. Observe that dpe MR(I*9(9) since 

(9 n Tf = 0 and so 5p(\g) = \. Thus 

IKK + k)™(f>M*p)\\ - IG» ~/)(^)i = / ( P ) - U i 
whence ||(dT,|g) — f(f)ll > i and this contradicts our hypothesis. So 
dist(H,J(X)) = i 
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Claim 4 dist (cow* (H), J (X)) = 1. 
Indeed, first dist (covv* (if), J (X)) < 1 because co"* (H) cz B(X**). On the other 

hand, let Q : = $ (/j) be the probability on <b(D) = H image of /i under the 
continuous affine mapping €>. As in Case (A) we have r(g) = (z0? -+\g). We claim 
that dist((z0, +\g\J(X)) > 1. Indeed, given / e l , w e have f\(9 = 0 and z0\(9 = 
= + 1 . Thus given e > 0 there exists an open neighborhood Fof (9 in /?/ such that 

Vi> e K /(i>) < | and z0(i>) > 1 - | . 

In particular, Vu e K n /, f(v)<\ and z0(v) > 1 — |, whence we get 
|| zo ~ j ] | -̂  1 "~ E that is, || z0 — f\\ > 1 because e > 0 is arbitrary. Thus 
||(z0, +\g) - (fj)\\ > 1, and this proves that dist((z0? +\g\J(X)) > 1. Q 

4. Con t ro l of convex subse ts in the dua l X* 

Let X be a Banach space, C a convex subset of X* and Wa w*-compact subset 
of I * . We study in this Section the problem of the control of the distance 
dist(covv*(W),C) by the distance dist(H^C). First, we have the following result of 
Hay don. 

Proposition 4.1. [20] Let X be a Banach space. The following statements are 
equivalent: 

(1) X fails to have a copy of' t\. 
(2) For every w*-compact subset K cz X* we have 

cow*(K) = co(K) = co (Ext (K)). 

(3) Every convex subset C cz X* has 1-control inside X*. 
(4) Every convex subset C cz X* has control inside X*. 
An elementary result is the following proposition. 

Proposition 42. Let C be a w*-closed convex subset of the dual Banach space 
X*. Then for every subset Wof X* we have dist (cow* (W), C) - dist(W9C\ 

Proof Clearly, the statement holds true when dist(W^C) = +oo. Assume that 
dist(W^C) = a < +oo . Since C is w*-closed, this implies that PV cz C + aB(X*). 
As C + aB(X*) is convex and w*~dosed, we get coH'*(W) cz C + aB(X*\ which 
implies dist(covv(IV), C) < a and completes the proof. D 

Now we prove the following proposition, that supplies a useful criterion for the 
3-control. 

Proposition 4.3. Let X be a Banach space. 
(1) IfC is a convex subset ofX* that fails to have a w*-N-family (in particular, 

if C fails to have a copy of the basis of^i(c)), then C has 3-control inside X*y that 
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ISifor every w*-compact subset K of X* we have dist{cow*(K),(C) <3dist(K, C). 
(2) If K is a w*-compact subset of X* such that K fails to have a w*-N family 

{in particular, if K fails to have a copy of the basis of £x (c)j, then cow* (K) = 
= co(K). 

In order to prove Proposition 4.3 we need to define the notion of w*-N-family 
(see [17, Definition 3.3], [19, Definition 2.1]) and prove the Lemma 4.5. 

Definition 4.4, Let X be a Banach space. A subset 3F of X* is said to be 
a w*-N-family of width d > 0 if £F is bounded and has the form 

$F = {riMtN : M,N disjoint subsets of N}, 

and there exist two sequences {rm : m > 1} cz U and {^ : m > 1} cz B(X) such 
that for every pair of disjoint subsets M9N of N we have 

*/MJV (xm) -^ rm + d9 Vm e M, and j / M j N (xn) < rm Mne N. 

Moreover, if rm = r0, Vm > 1, we say that #~ is a uniform w*-N-family in X*. 

Remarks. (1) If Z is a set, a family (AhB^ieI of pairs of nonempty subsets of 
Z is said to be an independent family if Ax n Bt = 0, Vi e I, and for every finite 
nonempty subset F cz I we have f]ieF^iAi ¥" 0, where £.• = + 1 , ( + l)Af = A{ and 
( —1)^4, = Bt. In N there exists an independent family (MhN^i<c with cardinal c. 
Indeed, since j3l\l is a Hausdorf compact space extremally disconnected with 
weight w(j8i\l) = c (see [30, p. 76]), by the Balcar-Franek Theorem (see 
[2], [9, p. 120]) there exists a continuous onto mapping f: fiN -» {0,1 }c. Let 
nx:: {0,1 }c -» {0,1}? i < c, be the projection onto the z-factor {0,1} and put 
Mt := (nt of)'-' (1) n N and Nt:= (nt of)'1 (0) n fU Clearly, {(Mi9N) : i < c} 
is an independent family in N. 

(2) If (MbN)i<c is an independent family in N with cardinal c and 3F = {Y\M 

:.M,N disjoint subsets of N) is a w*-N-family in the dual Banach space X 
associated with the sequence {^ : m > 1} cz B(X), then a standard argument (see 
[8, p. 206]) proves that the family {riMhN.: i < c} is equivalent to the basis of l\ (c). 
Moreover, the same argument yields that the sequence {^: n > 1} cz B(X) 
associated to $F is equivalent to the basis of £x. So, if a subset $F of a dual Banach 
space X* is a w*-N-family, then X has an isomorphic copy of £, and some subset 
of 3F is equivalent to the canonical basis of £x (c). And vice versa, if X has 
a copy of / b it is easy to see that X* contains a w*-N-family associated with the 
basis of ix (c). 

Lemma 4.5. Let X be a Banach space and K a w*-compact subset of X* such 
that dist (cow*(K), co (K)) > d > 0. Then there exist r0eU, z0ecow*(.K) and 
i/> e S(X**) with i/t(z0) > r0 + d and ij/(k) < r0, V/c e K, and such that, if ji is 
a Radon probability on K with barycenter r(/j) = z0 and H = supp(fi) is the 
support of fi, then: (i) for every w*-open subset V cz X* with Vn H # 0, there 
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exist £ ecow*(Vn H) such that \jj(^)>r0 + d; (ii) there exist a sequence 
{xt,: n > 1} cz B(X) and, for every pair of disjoint subsets M, N of N, a point 
rjMM e H such that 

?IM,N (xm) > r0 + d, Vme M, and r/MJV (x„) < r0, Vn e N. 

Proof Find s > 0 such that dist(cow* (K\co(K)) >d + z>Q = dist(K,co(K)). By 
Lemma 2.3 there exist z0eoow*(K) and i ^ e S ( I * * ) such that inf \jj(z0 — 
— co(&)) > d + e, that is 

\j/(z0) > sup i/t(co(K)) + d + s > sup i/t(IC) + e + d. 

So, if r0 : = sup i/t (K) + e, then i/t (z0) > r0 + d and ij/ (k) < r0, Vfc e K. Let /i be 
a Radon Borel probability on K with barycenter r(/x) = z0 and let II : = supp(/i) 
be the support of /A. 

Claim. For every w*-open subset V of X* with V n if # 0 there exist 
d; e covv* ( V n H) and r/ e co (Vn H) cz cow* (V n II) such that \j/ (£;) > r0 + d and 
•A (-7) < r0. 

Indeed, by Lemma 2.3 there exists ^ e covv* (Vn II) such that inf i// (£ — co (IC)) > 
d + e, that is, \\J (£) > r0 + d. On the other hand, as \j/ (k) < r0, Vfc e K9 then 
\jj(rj) < r0 for every rj eco(Vn H). Thus, by the Claim and the proof of [20, 
2. Lemma] we can find a sequence [x,,: n > 1} cz S(X) such that, if we define 

An = {d;e II: £(xn) > r0 + d) and Bn = {rje II: f/(x„) < r0}, Vn > 1, 

then, for every pair of disjoint finite subsets M, N of N, the w*~open subset 
V(M, N): = (f]mEMAt^ n (f]neNBn) of II is nonempty. So for every pair of disjoint 
finite subsets M, N of N 

0 # F(M,/V) cz ( H ^vv*)n (H^H1 c: II. 
wieM neN 

Since II is a w*-compact subset, we conclude that for every pair of disjoint (finite 
or infinite) subsets M9NofN then 

0#(n^n(n5n-.H. 
meM neN 

Since AJ"* cz {dfe II: £(xm) > r0 + d} and B/'* cz (r/e II: J/(X„) < r0}, finally 
we deduce that for every pair of disjoint (finite or infinite) subsets M, N of N there 
exists r\M%N e II such that 

riM,N(xm) > r0 + d, V m e M , and f/M,N(xn) < r0, VneN. D 

Proof of Proposition 4 3 . (1) Suppose that C fails to have 3-control inside X*. 
Then there exist a w*-compact subset K of X* and two real numbers a, b > 0 such 
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that dist(cow*(X),C) > b > 3a > 3dist(X,C). So, as dist(co(K9C) = dist(K, C) < a, 
then dist(coH*(K),co(iC)) > b — a > 0. By Lemma 4.5 there exist a real number 
r0 e 1R, a sequence {x,t: n > 1} c J3(X) and, for every pair of disjoint subsets M9 

.JV of N, a vector r\MtN e K such that 

^M,.v(xm) -5: ô + & — a5 Vm G M, and ^M,/v(^n) < r0, Vn e N. 

As dist(K9C) < a, for each pair of disjoint subsets M, AT" of N there is zMtN e C 
so that \[sMtN — ?IM,N\\ < &- Thus, the family {zMtN : M,N disjoint subsets of N} is 
bounded and satisfies 

ZM,N (*m) > r0 + b — 2a, Vm e M, and zMJV (xw) < r0 + a, VneN . 

Since r0 + b — 2a = r0 + a + (b — 3a) > r0 + a, then the set {zMiN : M, JV 
disjoint subsets of N} is a w*-N-family in C, a contradiction. 

(2) Otherwise, there exists d > 0 such that dist (cow* (K), co (K)) > d > 0. By 
Lemma 4.5 there exist a sequence {^ : n > 1} c I?(X), a real number r0 e IR and, 
for every pair of disjoint subsets M9 JV of N, a vector t]M^N e K such that 

VM,N(xn) > r0 + d, Vme M9 and riMtN(xn) < r0, V n e N . 

Thus there exists in K a w*-N-family, a contradiction. • 

The following result is due to M. Talagrand [29, Theorem 4]. 

Proposition 4.6. Let X be a Banach space and A a subset of X. If i is 
a cardinal with cofinality cf (T) > K0, we have that A contains a copy of the basis 
of £x (T) if and only if \_A~\ has a copy of £x (

T)-

This result of Talagrand allows us to prove the following corollaries. 

Corollary 4*7. Let X be a Banach space and A a subset of X* that fails to have 
a copy of the basis of £x (c). Then: 

(1) For every w*-compact subset K cz [yl] we have cow*(K) = co(K). 
(2) Every convex subset C cz \A\ has 3-control inside X*. 

Proof First, observe that [/I] fails to have a copy of the basis of ix (c) by the 
above result of Talagrand and by the fact that cf (c) > K0. Now it is enough to 
apply Proposition 4.3. • 

Corollary 4.8- Let X be a Banach space and let Wbe a subset of X* which is 
either weakly Lindelof or is closed, convex and has the property (C) of Corson. 
Then 

(i) Every convex subset C of [IV] has 3-control inside X*, and 
(ii) For every w*-compact subset K of [PV] we have covv*(JC) = co(K). 

Proof In both cases IV cannot have a copy of the basis of £x (c) and so (i) and 
(ii) follow from Corollary 4,7. • 
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Now we consider the control of convex subsets C a X* such that C a Y a X* 
and Y is a closed subspace of X* with w*-angelic closed dual unit ball. If Y is 
a Banach space, the closed dual unit ball B(Y*) is said to be w*-angelic if given 
a subset A of B(Y*) and a e Aw\ there exists a sequence {a„: n > 1} c A such 
that an -^~> a. A subset B of a w*~compact subset K of X* is said to be 
a boundary if every xeX attains on B its maximum on K\ and B cz K is said to 
be a strong boundary if 5 is a boundary and covv* (K) — co (B). 

Proposition 4.9. Let X be a Banach space and Y a closed subspace of X* with 
w*-angelic closed dual unit ball (B(Y*),w*). If C is a convex subset of Y, then 
dist (cow*'(K),C) = dist(B,C) for every w*-compact subset K of X* and every 
boundary B cz K. Moreover, cow*(K) = co (B) for every w*-compact subset K of 
X* such that Y contains some boundary B of K. 

Proof Let C be a convex subset of Y and suppose that there exist a w*»compact 
subset K of X*, a boundary B cz K and two real numbers 0 < a, b < 1 such that 

dist(cow* (K),C) > b > a > dist(B,C) = dist (co (B), C). 

Let w0ecovv*(iC) and s > 0 be such that dist (w0,C) > b + e. By Lemma 2.1 
there exists cp0e S(X**) such that inf<p0(w0 — C) > b + e, that is, cp0(w0) > 
> sup (/>0 (C) + b + s. Denote 

U:= {cpeB(X**):(cp,w0} > <%,w0> - e} and 
V:= {xeB(X):(w0,x} > <%,w0> - e). 

Observe that cp0 e U and also U = V . If i: Y —> X* is the canonical inclusion, 
then i* : X** -> Y* satisfies i*(<p0) e z*(L7) = i*(FJw* cz B(Y*). Since (B(Y*), w*) 
is angelic, there exists a sequence {x„: n > 1} c: V such that i*(xn) - ^ > i*(<Po) 
in the w*-topology <r(Y*, Y). Thus, for every y e Y w e have y(xn) = i*(x„)(y) -> 
-^ ^*(<Po)(y) = <Po(y). 

Claim. For every j8 e B, 

lim sup x„ (j8) < sup <p0 (C) + a < (D0 (w0) — e + (a — ft). 

Indeed, as dist(B, C) < a, there exists y e C cz Y such that ||/J — y|| < a. Thus 

lim sup xn(P) = lim sup [x„(y) + xn(fi - v)] -
n -* oo » -+ oo 

= ^ o W + lim sup x„(P - y) < sup <p0(C) + a . 
/ i~>a j 

Finally, as b + e + sup cp0 (C) < cp0 (w0), we get sup cp0 (C) + a < cp0 (w0) — 
- e + (a - b). 

By Simons inequality [28, 2. Lemma] we have: 

sup [lim sup xn (/J)] > inf [ sup g (k) : g e co ((xn)n>,)] . 
fleB n->oo fcecow'*(K) 
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Thus there exists g e co ((xn)n) a V such that 

sup g(k) < <PO(WQ) - B + (a - b). 

On the other hand, as g e V and w0ecow*(K), we have <p0(wo) — £ < supfcEco
w*(K)gf(k), 

whence we get <p0(w0) — s < (po(w0) — e + (a — ft), a contradiction because 
0 < 6 — a. 

Finally, suppose that 7 contains some boundary B of a w*-compact subset K of 
X*. Let C := co(B) c 7 By the above results dist (cow* (K)9C) = dist(B,C) = 0. 
Thus cow*(.K) = co(B) = co(K). D 

5e Universa l ly K r e i n - S m u l i a n Banach spaces 

In this Section we deal with the class 3F of Banach spaces that fail to have 
a copy of ix (c). Let us introduce our terminology. If Y is a Banach space we adopt 
the following definitions: 

(1) Let Z be a subspace of Y* and let o(Y9Z) denote the topology of Y of 
pointwise convergence on Z. Then (Y,a(Y,Z)) is said to satisfy the Krein-Smulian 
Theorem if and only if c o ^ ^ ( X ) is a(i^Z)-compact whenever K is 
a norm-bounded n(i^Z)-compact subset of Y. If, moreover, co^y,z '(K) = co(X), 
then (Y,G(Y,Z)) is said to satisfy the strong Krein-Smulian Theorem. 

(2) y is said to be universally Krein-Smulian if (Y,a(Y,Z)) satisfies the 
Krein-Smulian Theorem for every norming subspace Z of Y*. If (Y,o(Y,Z)) 
satisfies the strong Krein-Smulian Theorem for every norming subspace Z of 7*, 
then yis said to be strongly universally Krein-Smulian. 

The following elementary proposition gives some equivalences for the just 
defined notions. 

Proposition 5.1. If Y is a Banach space, then: 
(a) Yis universally Krein-Smulian if and only if for every Banach space X and 

every subspace Z of X* isomorphic to X the space (Z,w*) satisfies the 
Krein-Smulian Theorem. 

(b) Y is strongly universally Krein-Smulian if and only if for every Banach 
space X and every subspace Z of X* isomorphic to X the space (Z,w*) satisfies 
the strong Krein-Smulian Theorem. 

Proof, (a) Assume that 7 is universally Krein-Smulian. Let X be a Banach 
space, i: Y ~» X* be an isomorphic embedding and i(Y) = : Z <= X* be the 
isomorphic copy of 7 into X*. So, i*(X) a Y* is a subspace of Y* norming on 
7 such that (Z9w*) and (Y9a(Y9i*(X))) are isomorphic. Thus (Z9w*) satisfies the 
Krein-Smulian Theorem because (Y9a(Y9i*(X))) does. 
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To prove the converse implication, let V be a subspace of Y* norming on Y. 
Then there exists an isomorphic embedding i: Y -> V* so that (i(Y)9 a(V*9 V)) and 
(Y9a(Y9V)) are isomorphic. By hypothesis (i(Y)9 a(V*9 V)) satisfies the 
Krein-Smulian Theorem. Since the topologies a(V*9 V) and a(V*9 V) coincide on 
bounded subsets of V*9 we conclude that (Y9a(Y9V)) satisfies the Krein-Smulian 
Theorem. 

(b) This proof is analogous to the one of (a). • 

(3) A subspace Z of a dual Banach space X* is said to have M-control inside 
X*9 for some constant 1 < M < oo, if dist (covv* (K)9 Z) < M dist(K,Z) for every 
w*-compact subset K of X*. A subspace Z of X* is said to have control inside 
X* if Z has M-control inside X*9 for some 1 < M < oo. Clearly, if a closed 
subspace Z of X* has control inside X*9 then (Z9w*) satisfies the Krein-Smulian 
Theorem. 

(4) Yis said to have universal M-control, for some constant 1. < M < oo , if 
for every Banach space X and every subspace Z of X* isomorphic to Y9 Z has 
M-control inside X*. Y is said to have universal control if for every Banach space 
X and every subspace Z of X* isomorphic to Y9 Z has control inside X*. 

In this Section we show that the class of universally Krein-Smulian Banach spaces, 
the class of strongly universally Krein-Smulian Banach spaces, the class of Banach 
spaces that have universal control and the class of Banach spaces that have 
universal 3-control coincide with the class 3F of Banach spaces that do not contain 
a copy of £\ (c). The class SF is very large. It contains, for instance, the class of 
Banach spaces X with w*-angelic closed dual unit ball B(X*)9 the class of Banach 
spaces with the property (C) of Corson, etc. This class 3F has been studied by many 
authors: by Talagrand, by Cascales, Manjabacas, Vera and Shvydkoy, etc. In [5], 
[6] It is proved that, if a Banach space Y belongs to the class # \ then Y is strongly 
universally Krein-Smulian. 

We start with the connection between the class #" and the properties universal 
3-control and strongly universally Krein-Smulian. 

Proposition 5.2. If Y is a Banach space that fails to have a copy of (x (c), then 
Y has universal 3-control and is strongly universally Krein-Smulian. 

Proof This follows from Proposition 4.3. • 

For the particular class of Banach spaces Ywith w*-angelic closed dual unit ball 
B(Y*)9 we obtain the following stronger result. 

Proposition 5.3. If Y is a Banach space with w*-angelic closed dual unit ball 
B(Y*), then Yhas universal 1-control and is strongly universally Krein-Smulian. 

Proof Y has universal 3-control and is strongly universally Krein-Smulian by 
Proposition 5.2, because a Banach space Y fails to have a copy of (x (c) when-
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ever (J3 (Y*),w*) is angelic. Moreover, Y has universal 1-control by Proposition 
4.9, • 

The following result is a converse of Proposition 5.2. 

Proposition 5 A If X is a universally Krein-Smulian Banach space, then 
X does not contain a copy of £x (c). 

In order to prove this result we need the following elementary lemma. 

Lemma 5,5. ^(c) is not universally Krein-Smulian. 

Proof Consider the Banach space C([0,1]) whose dual C([0,l])* is the Banach 
space MR([0, 1]) of Borel Radon measures on the compact space [0,1]. It is well 
known that there exists in (J3(MK([0, l])),w*) a canonical homeomorphic copy 
K of the compact space [0,1]. In fact, K = {5t: t e [0,1]), where 5t is the measure 
on [0,1] such that <5r (/) = / (*) for all / e C ( [ 0 , l ] ) . Let 0 : ^ ( [0 ,1 ] ) - • 
-+ Ma([0,1]) be the natural isometry given by 0 ((Af)te[o,i]) = X<e[o,i]^A f° r every 
Wtepu] G A ([091]). Observe that Z : = <T*(-M([0, 1])) *s actually the subspace of 
purely atomic measures on [0,1]. Clearly, K a B(Z) and coM*(K) is the subset 
^ i ( [0 ,1 ] ) of MR([0,1]) consisting of the Borel Radon probabilities on [0,1], 
which satisfies &x ( [0 ,1] ) \Z -^ 0. So, £x (c) is not universally Krein-Smulian. • 

Proof of Proposition 5.4. We suppose that X is a Banach space containing 
a subspace Y isomorphic to £x ([0,1]) and we shall prove that X is not universally 
Krein-Smulian. Let T: £x ([0,1]) -> X be an isomorphism into X such that 
T(^([0 ,1]) ) = Y The space C([0,1]), considered as a subspace of 
^ ( [ 0 , 1 ] ) = A([0,1])* (that is, C([0,1]) = { / e C ( [ 0 , l ] ) : / continuous on 
[0,1]}), is 1-norming on / t ( [0 , l ] ) . Let Ex be the subspace of X* defined by 
Ex := T*_ 1(C([0,1])). It is easy to see that Ex is A0-norming on Y, for some 
0 < X0 < 1 depending on T (in fact, A0 = \\T~~]\\~l - \\TW~1 holds). Moreover, if 
T is the a(^([0, l ]) ,C([0, l ]))- topology of €x ([0,1]), then T: (tx ([0, 1] ) ,T) -> 
-> (l^o"( X-Ej)) is an isomorphism. 

Let £ 2 = Y1 = {ZE X* : z(y) = 0, Vy e Y} <= X* and £ = Ex + £2. 

Claim 1. E is y-norming on X. 

Indeed, pick u e S (X). 
(a) Suppose that dist(M, Y) < y and let y0 e Y be such that \\u — y0|| < if- Then 

Hyoll > 1 — ^ > f. Since Ex is A0-norming on Y, we can find an element ex e S(EX) 
such that ex (y0) > §20, whence we get ex (u) > ^X0. 

(b) Suppose that dist (M, Y) > y. Then 

sup {e(u): e e B(E)} > sup (e(w): e e B(E2)} = 

= sup {Z(M) : z eB(Y-L)} = dist(w, Y) > ~~. 
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Therefore, E is y-norming on X. 

Claim 2. Y is a (X, Enclosed in (X,a(X,E)) and a(X,E)\Y= o(Y9E1). 

Indeed, Y is o (X, Enclosed in (X9o(X9E)) because Y= 0eeE2
Ker{e) a n d 

a(X9E)\Y= a(Y9Ex) because E = E, + E2 and £ 2 - Y1. 
By Lemma 5.5 there exists a subset K cz B(£x ([0,1])) such that K is T-compact 

but coT(K:) is not T-compact in (A ([0,1]),T). Let H := T(K) a Y By Claim 2, 
Ff is a norm-bounded o (X, £)-compact subset of Y Moreover, by Claim 2, 
c o ^ ' ^ F r ) = co°<^i)(H) cz yand, so, co^x^(H) is not o (X, £)-compact because 
it is homeomorphic to coT (&), which is not T-compact. Thus X is not universally 
Krein-Smulian. • 

Combining all the above results we obtain the following proposition. 

Proposition 5.6. For a Banach space Y the following statements are equival­
ent: 

(0) Y is universally Krein-Smulian. 
(0') If X is a Banach space and Z a subspace of X* isomorphic to Y, (Z, w*) 

satisfies the Krein-Smulian Theorem. 
(1) Y is strongly universally Krein-Smulian. 
(T) If X is a Banach space and Z a subspace of X* isomorphic to Y, (Z9w*) 

satisfies the strong Krein-Smulian Theorem. 
(2) Y has universal 3-control, that is, for every Banach space X and every 

subspace Z of X* isomorphic to Y we have dist (coM;* (K)9 Z) < 3dist(K9Z) for 
every w*-compact subset K of X*. 

(3) Y has universal control, that is, if X is any Banach space and Z is 
a subspace of X* isomorphic to X there exists a constant 1 < M < oo such that 
dist fp5"'* (K)9 Z) < M dist (K9Z) for every w*-compact subset K of X*. 

(4) Y fails to have a copy of' t\ (c). 

Proof By Proposition 5.1 we have (0) <-> (0') and ( l ) o ( l ' ) . Clearly, (1) => (0) 
and (2) => (3) => ((X). From Proposition 5.2 we get (4) => (1) + (2). Finally, 
(0) => (4) by Proposition 5.4. 

6. Convex w*-closures vs convex || • | |-closures 

A subset y of a dual Banach space X* is said to have the property (P) if 
co** (if) -= co (If) for every w*-compact subset H of Y9 that is, every w*-compact 
subset H cz y is a strong boundary. The purpose of this section is to give an inner 
characterization of the property (P) for subsets of the dual Banach space X*. 

Haydon [20] characterized the property (P) for a whole dual Banach space X* 
as follows: X* has the property (P) if and only if X foils to have a copy of ix if 
and only if every z e X** is universally measurable on (X*9 w*). 
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The fragmentability is a useful notion related with the property (P). Namioka 
proved that a subset Y c l * has the property (P) whenever (Y,w*) is 
norm-fragmented ([24, 2.3. Theorem]). So, norm-fragmentability implies the 
property (P). The converse is not true. Indeed, let X be the James Tree space 
JT (see [21]), which is a non-Asplund separable Banach space without 
a copy of i v So, JT* has the property (P) by a result of Haydon [20], but the 
closed unit ball B(JT*) of JT* is not norm-fragmentabie, because the 
norm-fragmentability of B(X*) is equivalent to the asplundness of X (see [24, 1.3. 
Theorem]). 

Let (X, T) be a Hausdorff topological space, Y a subset of X and ji a finite 
positive Borel Radon measure on X. 

m $Q(X) will denote the n-algebra of Borel subsets of X. 
m The positive Radon measure /i is carried by Y if there exist a sequence of 

compact subsets {Kn: n > 1} of Y such that Kn cz Kn+1 and fi(Kn) f fi(X). 
m Y is said to be a universally measurable subset of X if Y is /i-measurable for 

every finite positive Borel Radon measure ii on X. 
m A mapping f:X-+Uis said to be ^-measurable if f " 1 (G) is ^-measurable 

for all open subset G of U. 
m If (Z, T) is another topological space, a mapping / : X -> Z is said to be 

Lusin fi-measurable if for each s > 0 there exists a compact subset K of 
X such that fi(X\K) < £ and f \ K is continuous. Recall that by Lusin's 
Theorem a mapping f: X -* R is ^-measurable if and only / is Lusin 
^-measurable. 

m A mapping / : X —> Z is said to be universally measurable on Y if and only 
if / is Lusin /^-measurable for every positive finite Radon Borel measure 
ji carried by Y, which is equivalent to say that, for every w*-cornpact subset 
K e y and for every Radon Borel probability \i on K9 f is Lusin /i-measur­
able. 

In the following Proposition 6.3 we characterize the property (P) for an arbitrary 
subset Y of a dual Banach space X* by means of w*-N-families (see Definition 
4.4) and Cantor skeletons. Let us give the definition of a Cantor skeleton. 

Definition 6.1. A subset si of a dual Banach space X* is said to be a Cantor 
skeleton of width 8 > 0 if si is a bounded set of the form si = [ka : a e c€] and 
there exist sequences [c^ : n > 1} cz U and {%,„: m > 1} cz B(X) such that, for 
each a e {0,1 }N and for every m > 1, we have </^,xm> < am, if o(m) = 0, and 
(K>xrn> -^ am + $> tf a (m) = 1- Moreover, if an = a, Vn > 1, we say that si is 
a uniform Cantor skeleton. A w*-compact subset K of X*jis said to be endowed 
with a Cantor skeleton Jf" if J f is a Cantor skeleton and 3fw* = K. 

Remark 6.2. (0) w*-N-families and Cantor skeletons are almost the same thing. 
Actually, if #" is a w*~N-family, there exists a subset Jf of $F which is a Cantor 
skeleton. And vice versa, if JT is a Cantor skeleton, there exists a subset 3F of 
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X which is a w*-N-family. Indeed, suppose that #" := {r/M,/v disjoint subsets of 
N} is a w-t\l-family in X* such that 

riMtN(xm) > rm + 89 Vm e M , and fiMj*(xn) < rn9 V n e N. 

For each a e { 0 , l } N , let M : = ( n e N : ( j ( n ) - 1} and N := M\M, and define 
^ -= *?MJV- Then, it is easy to see that J f := {ft..: a e {0,1}N} is a Cantor skeleton 
of width 8 in X*. Of course, JT is uniform if J^ is uniform. The converse is also 
true: if {ha: a e {0,1}N} is a Cantor skeleton of width 8 > 0 associated with the 
sequences {rm: m > 1} c [R and {;<;„: m > 1} cz f?(X) for each pair of disjoint 
subset M, AT of N choose aM^N e <$ such that crMtN(m) = 1, Vm e M and rjMjAr = 0, 
VH e JV. So, if for each pair of disjoint subset M9 N of N we define riMtN = fcffMjv, 
then {r/MJV : M9N disjoint subsets of N} is a w*-l^-family in X*. 

(I) Let X be a w*-compact subset endowed with a Cantor skeleton 
,$/ = {ka: a e ^>} of width 8 > 0 associated with the sequences {rm : m > 1} cz U 
and {.x :̂ m > 1} cz B(X). Then we have: 

(II) For every k e K and every m > 1 either <fc,xm> < am or <fc,xm> > am + <3. 
Moreover, if we define the mapping O : X -• # = {0,1 }N as 

we have that €> is a continuous mapping that satisfies $ (X) = c€. 
(12) In general, X may not be homeomorphic to c€9 even X may not contain 

a subspace homeomorphic to c€. Indeed, pick the compact space fiN considered 
homeomorphically embedded into (2?(C(/?M)*),w*). It is clear that co(jSM) g. 
j— covv*(j8N) because co(^N) is the set of purely atomic probabilities on ^N and 
covv* (PN) is the set of all Radon probabilities on fiN. This fact implies (by the 
next Proposition 6.3) that there exists a w*-compact subset X of f}N endowed 
with a uniform Cantor skeleton with respect to C(fiN)*. However, X cannot 
contain a homeomorphic copy of # because @N fails to contain non-trivial 
convergent sequences. 

(13) For every 0 < ^ < 8 there exist an infinite subset N(| c M, a real number 
htp and a subset srfn cz si such that stf„ is a uniform Cantor skeleton of width 
r\ associated to the number b„ and the sequence {x,n: me Nt]} cz B(X). Indeed, 
since the family {a„: n > 1} cz U is bounded, there exists bn e tR such that 
Nn\= {me N : b„ + r\ - 8 < am < hn} is infinite. Let TT : {0?1}^ -> {0,1}N|? be the 
canonical projection and for each T G { 0 , 1 } N " choose a (T) e n~l

 (T). Define 
K '>= K(r) for each T e {0,1}N , / . Then it is easy to see that $0n : = {1%,.: T e {Q9l}

N,]} 
is a uniform skeleton of width ^ > 0 associated with b„ e U and the sequence 
{xtn:meNrj}c^B(X). 

Proposition 6 3 . Let X be a Banach space and Y a subset ofX*. The following 
statements are equivalent: 

(1) Y does not have the property (P). 
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(2) There exist a w*-compact subset H of Y and two real numbers a < b such 
that for every finite family 3F of w*-open subsets of X* with 7 n . f f # 0 , V 7 e ^ , 
there exists x^ e B (X) fulfilling that 

inf < F n II,xF> < a < b < sup <V n H9x&}9 VFe ^ . 

(3) There exists a w*-compact subset K of Y endowed with a uniform Cantor 
skeleton. 

(4) There exists afunctional \jj e X** which is not universally measurable on Y 
(5) There exists a w*-compact subset H of Y which is uniformly non fragment-

able, that is, there exists <5 > 0 such that for every finite family 3F of w*-open 
subsets of X* with F n II # 0, \/Ve ^, there exist x& e B(X) and r> e IR such 
that 

inf <Vn II,x^> < *> < r> + 5 < sup <Vn II,x,^>, VFe J^ . 

(6) There exists a w*-compact subset H of Y that contains a w*-N-family. 

Pro°f« (1) => (2).. Since Y does not have the property (P), there exists 
a w*-compact subset K <= Y such that dist (covv* (K)9 co(K)) > d + e > 0 = 
= dist (K9 co (K)) for some d9e > 0. By Lemma 2.3 there exist z0e covv*(X) and 
i/t 6 S(X**) such that inf i// (z0 - co(K)) > d + e. Thus 

lit(z0) > sup i/t (co(K)) + d + s > sup \jf (K) + & + d. 

Moreover, there exists a nonempty w*-compact subset H a K such that for 
every w*-open subset V of X* with F n I I ^ 0 there exists £ ecoM;*(Vn H) 
with inf ^ ( ^ - co(iv)) > d + e. Thus \j/(£) > sup\//(K) + d + e. So, if we put 
ro := sup \// (K) + 8, then \jj(t;) > r0 + d and i/t(fc) < r0, Vk e K. Therefore, if 
^ is a finite family of w*-open subsets of X* such that VnII^0, V F G # \ there 
exist kve Vn H and %ve cow*(Kn If) so that */t (kK) < r0 and i/t (£K) > r0 + d for 
every F e # \ Thus, as B(X) is w*-dense in B(X**)9 we can find a vector 
Xjr G B (X) such that 

inf < F n II,x,^> <r0<r0 + d < sup <cow* ( 7 n II),x,r), V V G # \ 

Since Xjr G X, then sup <covv*(Vn II), x&) = sup < F n II,x^> and so (2) holds 
with a : = r0 and h : = r0 + d. 

(2) => (3). Let II be a w*-compact subset of Y fulfilling (2). First, we construct 
an independent sequence {(Am9Bm) :m > 1) of subsets of H. 

Step 1. By (2) there exists x- e B(X) such that 

inf <II,X]> < a <h < sup<fI,x1>. 

Define Vn = {he X* : <fe,Xi> < a} and P 2̂ - {/ZGX* : <fc,x,> > h}. Observe 
that VunH # 0 , i = 1,2. 
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Step 2. By (2) there exists x2 e B (X) such that 

inf (yu n H,x2> < a < b < sup (VXi n PI,x2>, i = 1,2. 

Let Vn = {he X* : </z,x2> < a} and F22 = {he X* : <fc,x2> > &}.• Observe that 
P5inV?/n.ff#0,U-= 1,2. 

Further, we proceed by iteration. We obtain a sequence {VnUVn2:n > 1} of 
w*-open subsets of X* such that VUl n ... n Vnin n H ?- 0, i-} e {1,2}, n > 1. Thus, 
if we define 

_4m = {he H: </i,xm> > b} and Bm = {he H: </i,xm> < a}, m > 1, 

then it is easy to verify that {(4„, JBOT) : m > 1} is an independent sequence of 
w*~closed subsets of H. Now, for each a e {0,1 }N and each n e N, let C ^ = -4„, 
if <r(n) == 1, and C^) = B„, if a(n) = 0. By compactness, it is clear that 
C)n>\CM # 0 V a e | 0 , l f . So, we can choose ^ e ^ ^ C , ^ Vcxe {0,lf. Let 
& : = [ha:ae {O,!]^]1'*. It is easy to see that {^ : a e {0,1 }N} is a uniform Cantor 
skeleton of K of width b — a. 

(3) => (4). Let X be a w*~compact subset of Y endowed with a uniform Cantor 
skeleton {ha : a e {0,1}N} of width 5 > 0 associated with the number r0 e R and the 
sequence {x,n: m > 1} c B(X). So, K = jK^Ve {0,lf7*. Let T: <f- -> X be the 
continuous operator such that T(e„) = xm Vn > 1, {eti: n > 1} being the canonical 
basis of tx. So, its adjoint T* : X* -> tfaj fulfills T*(x*) = (x*(xm))m, Vx* e l * . 
Define the mapping <J> : {^ —> ^ as follows 

V(a n)„G^ $((-4.) = " ( (K - ro) v 0) A «5)„. 

The mapping 3> is w*»w*-continuous and satisfies <D O T*(X) = {0,1 }N = #. Let 
A be the Haar probability on <$ and /i a Radon probability on K such that 
$ O T* (/i) = A, that is, X is the image of \i under the w*-w*-continuous mapping 
<D O T*. By a well known Sierpinski's argument ([27], [26, 14.5.1]), for every 
pefiM\N the point mass <5/7eS(/*) is not 2-measurable. By [25, Theorem 9, 
p. 35] the mapping 5P O <J> O T* : K' —> IR is not /i-measurable on X, which 
actually means that {x* e K : 5P O €> O T* (x*) > 1} is not /i-measurable (because 
for every c e # either 5P (c) = 1 or 5P (c) = 0). As 

{X*E X : 5- O <t» O T*(x*) > 1} = {x*eK : 5P O T*(x*) > r0 + 5}, 

we conclude that dpO T* eX** is not /^-measurable. So, «5pOT*eZ** is 
a functional which is not universally measurable on Y. 

(4) => (5), Let K be a w*-compact subset of Y and \i a Radon Borel probability 
on K such that there exists a functional i/t e X** which fails to be ^-measurable 
on K. For every subset A a K we define the "inner measure /i*(-4)" as follows 

[Ji*(A) = sup {^(L): L a w*-Borel subset of K with L c i } . 
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It is easy to see that: (i) fi* is monotone and 0 < ft* (A) < 1, V̂ 4 cz K; (ii) if 
A cz K9 there exists a Borel subset L cz A such that ji (L) = ft* (A); (iii) if 
^An :n > 1} is a sequence of subsets of K with An+l cz A , then ^*(nn>!^n) = 
« inf., >!/!*(/!„); (iv) a subset 4 c K is not ^-measurable if and only if 
JL-U(A) + /A*(K\A) < 1. For every r e R w e define 

Ar = {£eK:\lj(£) > r) and flr = {^eKixjj^) < r}. 

Since \jj fails to be /i-measurable, there exists r0 e U such that Aro is not 
//-measurable, that is, n*(Aro) + fi*(K\Aro) < 1. As X\>4ro = f]n>\Bro+L we 
get /i*(_K\.<4ro) = infn^1/j*(Bro+i) and so there is some S0 > 0 such that 
M^ro) + M-^+a0) < L 

Claim. There exists a nonempty w*-compact subset H cz K such that, if V is 
a w*-open subset of X* with V n H i=- 0, then V n H intersects simultaneously 
K\^ r o and K\Bro+So. 

Indeed, let Lcz Aro and M cz J3ro+5o be Borel subsets such that fi(L) = fi*(Aro) 
and /i(M) = ^(Bro+*,). Clearly, /i(Lu M) < fi(L) + /i(M) = L/*(^ro) + v*(Bro+So) < 
< 1, whence /i(K\(Lu M)) > 0. Let if cz K\(Lu M) be any w*-compact subset 
such that, if v : = fi \ H9 then v > 0 and supp (v) = H. Let V be a w*-open subset 
with Vn H # 0. Then L/(Fn if) > 0. Assume that F n if cz 4ro. Put L = L u 
u ( F n if). Clearly, /**(v4ro) > /LI(L) = fi(L) + fi(Vn if) > jU*(,4,.0), a contradic­
tion that proves that (K\Aro) n (Vn H) # 0. In a similar way one can prove that 
(K\Bro+So)n(VnH)^0. 

Let s > 0 be such that r0 + e < r0 + <50 — 6 and define r^ := r0 + a and 
8 : = <50 — 2s. Then (5 > 0. By the Claim, if #~ is a finite family of w*-open 
subsets of X* such that V n H # 0, VFe #", for each Fe 3F we can find vectors 
£V9 rjveV n H if so that 

^(nv) < ri < ri + ^ < *A(£V). 

Since B(X) is w*-dense in B(X**)9 we can find a vector x*? e B(X) such 
that 

<*ft*x̂ > < r, < ri + (5 < <£K,x*r>, V F G # ~ . 

(5) => (6), Let H be a w*-compact subset of Y, which is uniformly non 
fragmentable for some 5 > 0. By using an argument similar to the one of 
the implication (2) => (3), we find two sequences {rm:m>l}czU and 
{^ : m > 1} cz J3(X) such that, if 

Am = {fcefl: <fc,xm> > rw + <3} 

and 

Bm = {fee if: </i,xw> < rm}9 m > 1, 
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then {(ДиjJB^im > 1} is an independent sequence of w*-cłosed subsets of Я . 
By an argument of compactness, for each pair of disjoint subsets M, ЛГ of N 
we have (f]meMAm) n(f]nєNBn) ф 0. So, we can choose цMчN є (f]mєM Am) n 
n ( П ^ v Д i ) - Clearly, {ľjMìN:M9N disjoint subsets of ÎҸ} is a w*«ľҸ-family in 
Я such that 

«1M,JVW > rm + <5, Vm є M, and rjMtN(xn) < rm Vn є iV. 

In order to prove the implication (6) => (1) we use the following lemmas. 

Lemma 6.4, Let <€ := {0,1}^ be the Cantor compact set considered as a subset 
of the compact space ( ^ ( ^ ( N ) ) , w*). There exists a w*~compact subset D a <€, 
homeomorphic to (€, such that cõ (D) g cöw* (D). Actually, there exists z0 є cow* (D) 
such that dist(z09æ(D)) = 1 = dist (cowҶD), co (Ď)). 

Proof Let us recall the notation introduced in the proof of Proposition 3.1: 
<€ = {0,1 }N, Sŕ := {09\}<н = {0,1} u {OД}2 u {0,1)3 u ..., the Haar probability 
X on {0,lf, In: = {fA:Acz {QД}" with \A\ = T - n}ђ I := [jn>ìIm &(a) = 
= {fAєI:fA(a) = 0}9&:= Ç\^Җpf\ the mapping ф \<Є -> {0,1}' c= B(^(l))9 

D:= ф(%) cz {0,1}7, џ:= ф(X)ђ r(џ) =: z0 є шw*(D)9 etc. Recall that z0(p) = 1 
for every p є I* := ßl\l. 

Take p є & and let òp є łaj (/)* be such that õp (f) = f(p)9 Vf є ťfæ (I). Clearly, 
õp(z0) = ž0(p) = + 1 , but ôp(d) = ã(p) = 0, V d є ű . Thus 1 < dist(z0,cő(D)) < 
< dist Гcow*(D),cö(í))). As čöw*(D) c [0, l ] 7 and diam([0, l]7) < 1, fínally we get 
1 = dist(z0,ëö(D)) = dist(čõw*(ű), æ(D)). D 

Lemma 6*5. Let K be a w*-compact subset ofa dual Banach space X* such 
that K contains a Cantor skeleton ofwidth ő > 0. Then there exists a w*-compact 
subset H of K such that dist (ëõw* (Я), čo (Я)) > ö. 

Proof. Let sś := {k^: a є Щ be a Cantor skeleton of width ô > 0 inside K. 
Without loss of generality, we suppose that K = sŕ . 

(A) First, we assume that K is a w*~compact subset of гfæ and sá a uniform 
Cantor skeleton of width á = 1 of K so that, for each a є {0,1}^ and for every 
m > 1, we have nm(ka) < 0, if a(m) = 0, and n^Ąk^) > 1, if a(m) = 1. Consider 
the continuous mapping Ф: K -> <€ such that, Vk є K9 Ф(k)(m) = 1, if km > 1, 
and Ф(k)(m) = 0, if km < 0. Clearly, Ф(K) = <g. By the proof of Lemma 6.4 there 
exist a w^-compact subset D c= c€ cz £IУÕ (I), a Radon probability џ on I) so that 
џ = флђ Å being Haar probability on ^ , such that, if z0 = r(џ) is the barycenter 
of џ9 then dist(z0?ëo(í))) = 1. Let 

Dm = {dєD: nm(d) = 1} and Dm = {dєD: nm(d) = 0}, m> 1. 

By the proof of Proposition 3.1 we have ^(Д1,,) -> 1 and so џ(Dm) = џ(D\Dm) -> 0 
for m -> oo. 

33 



Claim. If <E> l(D) =:H a K, then there exists u0 e covv*(H) such that d(u0, 
co (if)) > 1. 

Indeed, since O(iJ) = D and $ is w*-w*-continuous, there exists a Radon Borel 
probability v on H such that €>v = ft. Let uQ:= r (v) be the barycenter of v, that 
satisfies u0 e covv* (H). 

Sub-Claim. Given & > 0, there exists ne e N such that nm (u0) > 1 — 6, 
Vm > ?v 

Indeed, observe that 7rm(w0) = 7im(r(v)) = $Hnm (h) dv (h\ Vm > 1. Let 0 < M < 
< oo be such that \\h\\ < M, Vft e H, and choose r\ > 0 with a > ?/ (1 + M). Now 
we choose nEeN such that ^ (D„) > 1 — if, Vm > ne, (and ju (D°) < rj). Then for 
m > n- we have 

= /*(/)£,) - M[i(Dl) > 1 - r/ - Mri > 1 - e. 

In order to show that d(u0,co(H)) > 1, it is sufficient to show that ||u0 — p|| > 1 
for each peco(H). Let p = X$=i*A' where tje [0,1], Yj=itJ = ^ ^ ^ ar*d 
0(fc/) =:djeD for each j . By (3) of the proof of Proposition 3.1 there exists 
a sequence of integers mx < m2 < ... such that nmr(d}) = 0 for r > 1 and 
j = 1,..., k. So, by the definition of $ we have ntHr(h/) < 0 for r > 1 and 
j = 1,... k, that is, nmr(p) < 0 for r > 1. Thus from the Sub-Claim we obtain 
II Mo — PII -̂  1- So, this proves the Claim and completes the proof of the statement 
in this case (A). 

(B) Now, we suppose that K is a w*-compact subset of /rx-endowed with 
a Cantor skeleton stf : = {ka : a e ^} of width d > 0 associated with the numbers 
(an)n>i e^oo a nd the sequence of canonical projections {7tm:m>l}9 where 
nm(k) = km, Vfee^oo. Let T : ^ -~» ^ be the mapping such that T(x)(n) = 
= (xn — a„)/<5, ^neN. Then T is an affine mapping which is w*-w*-continuous 
and || • || -continuous. If L = T(K), then L is a w*-compact subset endowed with 
a uniform Cantor skeleton T(srf)9 which satisfies the requirements of case (A). So, 
there exists a w*-compact subset W a L and a point w0e cow*(KV) such that 
dist(w0,co(PV)) > 1. Let H:= T~~l(W). Clearly, H is a w*-compact subset of 
K such that T(H) = W, T(co(H)) cz co(l^) and T(cow*(H)) = covv*(VK). Thus, if 
u0ecow* (H) satisfies T(u0) = w0, then dist (w0, co(iI)) > (5, by the form of the 
mapping T 

(C) Finally, we suppose that K is a w*-compact subset of an arbitrary dual 
Banach space X* endowed with a Cantor skeleton s/ : = [k^'.a ec€] of width 
8 > 0 associated with the numbers (an)n>x e t^ and the sequence {\: n > 1} cz 
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<= B(X). Consider the continuous operator T:(x -> X such that, V(/Qtt>i e tfb 

r((ln)„>!) - Xn*i-4«x» e X. Observe that || T|| < 1. Then, T* (K) is a w*-compact 
subset of C and {X* (ka): a e <?} is a Cantor skeleton of T* (K) of width (5 > 0, 
that satisfies the requirements of case (B). So, there exists a w*-compact subset 
WczT*(K) and a point w0ecovv*(FV) such that dist(wC)9co(rV)) > 5. Let 
H : = T*-1 (W) n K. Then II is a w*-compact subset of K such that T* (H) = W 
and T*(cow*(II)) = cow*(PV). Let u0ecow*(H) be such that T*(MQ) = w0. Taking 
into account the fact that ||T*|| < 1 and that co(W) cz T*(co(H)) cz co(W)9 we 
get dist(Mo,co(H)) > dist(T*(u0), T*(co(II))) = dist(w0,co(PV)) > 5 and this 
completes the proof of the Lemma. • 

Proof of (6) => (1). Let {rjMN : M, N disjoint subsets of N} be a w*-N-family in 
some w*-compact subset II of Y For each a e {0,1}N, let M : = { n e N : a(n) = 1} 
and N := N\M9 and define ha := riM%N. Then, it is easy to see that {ly: a e {0,1 }N] 
is a Cantor skeleton of the w*-compact subset Jha: a e {07Tp"}H =: K a H. Now 
it is enough to apply Lemma 6.5. • 

Remark. By Proposition 6.3, if Y is a w*-compact subset of a dual Banach 
space X*, then Y fulfills the property (P) if and only if Y does not contain a Cantor 
skeleton. Actually, this equivalence holds true for the class of ^-analytic subsets 
of (X*9w*) (see [19, Proposition 3.8]). On the other hand, in [17, Corollary 12] we 
have constructed subspaces Y (non w*-Jf-analytic) of a dual Banach space X* 
that simultaneously have the property (P) but Y fails to have 3-control inside X*. 
Thus, Y contains a w*-N-family and so a Cantor skeleton by Proposition 4.3. 

7. The con t ro l for 1-uncondi t ional d i r ec t sums and Banach la t t i ces 

In order to find classes of Banach spaces with a control in the bidual better than 
in the general case, we examine in this Section the class of 1-unconditional direct 
sums of Banach spaces and the class of Banach lattices. First, we have the 
following remark: the counterexamples we have constructed in Section 2 (a Banach 
space X and two w*-compact subsets KhK2 cz B(X**) such that dis t (K bX) = 3, 
dist(K29X) = \ but distfco"* (£ , ) , * ) = 1 - dist(cow*(K2),X)) are Banach latti­
ces. So, concerning the control inside the bidual, the class of Banach lattices 
behaves as in the general case. However, as we see in the sequel, the behavior of 
some classes of Banach lattices (as the order-continuous Banach lattices, Banach 
spaces with an 1-symmetric basis, etc.) is better than in the general case. Let us 
begin with the definition of 1-unconditional direct sums of Banach spaces. 

Definition 7.1. A Banach space X is said to be an 1-unconditional direct sum 
of a family of Banach subspaces {Xa: a e j / } of X, for short, X = ^a&c/ (x) Xa 

1-unconditional, when X = [ ( J a & ^ J ond, if xa e Xa ,ea = + 1 , a e s&, and A is 
a finite Subset Of S$, then \\Y,xeA8aXa\\ -^ llXae^all-
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Remarks. Let X = Yj&st 0 ^ be an 1-unconditional direct sum of Banach 
spaces. We have: 

(1) For each subset A a si there exists a projection PA : X -» X such that 
\\PA\\ = 1 and PA(X) = Y«tA 0 Xa. 

(2) Every xeX has a unique representation of the form x = ]£a&c/Xa with 
xaeXa such that the subset {aesi:xa^0} is countable, the above series 
converges unconditionally and llXae^a^J = IMI> where 8a = + 1 , Vae si. 

(3) If u G X*, the a-th coordinate wa of u will be the restriction 
ua:= u \ Xae X* of u to Xa. We will identify u with the family (ua)ae ̂  of its 
coordinates. 

(4) We consider each dual X* canonically and isometrically embedded into X* 
as follows. If Pa: X -> X a is the projection associated to Xa, then P*(X*) is a sub-
space of X* isometric to X* We identify X* with P*(X*). Consider in X* the 
closed subspace Y0 := [ lJ ae^X*], which is actually the 1-unconditional direct sum 
of the closed subspaces {X*: a e si}, that is, Y0 = ]Ta&ct, 0 %t 1-unconditional. 
Let Y* be the dual of Y0. We have the following fact. 

F a c t There exists an isometric and isomorphic embedding h : Y* -> X** of Y* 
into X** so that X** = /i(Y0*) ©lo1 , that is, X** is the monotone direct sum of 
h(Y£) and Y09 which means that every zeX** has a unique decomposition 
z = zx + z2 with z, E h(Y*) and z2 e Y0 such that ||z|| > \\zx\\ \J \\z2\\. 

Indeed, if z e Y£ for each a e si let za: = z \ X*be the a-th coordinate of z and 
identify z with the family (za)aec/ of its coordinates. In order to embed T^Anto X**, 
define the mapping h : Y* -> X** as follows: 

Vz G Y0f Vw G X*9 h (z) (u) = X za (wa). 

It is easy to see that h is an isometric and isomorphic embedding of 1Q* into X** 
such that every z e X** has a unique decomposition z = zx + z2 with Zj e ^(Y0*)? 

Z 2G Yr} and ||z|| > \\zx\\ \J \\z2\\. 
(5) Observe that the canonical copy J(X) of X in X** is inside h(Y*) although 

J(X) # h(Y*) in general. 
Let us investigate the control inside its bidual of a Banach space which is an 

1-unconditional direct sum of WCG subspaces. First, we need the following 
lemma. 

Lemma 7.2. Let X be a Banach space and K a w-compact subset of X*. Given 
z e J3(X**) and e > 0, there exists xe X such that \\x\\ < 1 + s and 

VkeK, z(k) - e < x(k) - e < x(k) < z(k) + e. 

Proof. Without loss of generality, we suppose that K is convex and symmetric 
with respect to 0 (otherwise, pick co(X u ( — K)) instead of K). Consider the 
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Banach space Z = X 0 - R. Then Z* = X* 0 ^ R and Z** = X** 0 - R. Let 
if, : = {(fc,z(fe) - f ) : feeK} and H2: = {(fc,z(fc) + f): fe G &} be two w-compact 
convex disjoint subsets of Z* such that, if H = H2 — Hu then H a Z* is 
a w-compact convex subset (and so a w*-compact subset) of Z* fulfilling that 
H n jS(0;f) = 0. Thus, if we pick Q > 0 with ̂  < e < 1, then H n B(0;f) = 
= 0. By the Hahn-Banach Theorem there exists a vector <peB(Z) such 
that<ft,<p> > f, Vhe H. If (p = x0 + t0, with X 0 G X , t0e R and \\(p\\ = \\x0\\ + 
+ \t0\ < 1, then for every ( k ^ z ^ ) — t)effi and every (fe2,z(fe2) + f)eif2 we 
have 

< 4 M ^ ) +1) - <M(M^.) -1))^ f • 
Thus 

x0(k2) + t0z(k2) + C- > x0(fe,) + t0z(kx) - t 0 | + y , (7.1) 

whence choosing fe, = fe2 i*1 (7.1), we get t0e > f, that is, § < t0 < 1. So, 
||x0|| < 1 - f. Putting fe, = 0 in (7.1) we get 

Vfe G K, X0(k) + t0z(k) + t 0 1 > -f 0 § + y . 

Thus 

V / c e K - - x o ( f c ) < z(fc) + ^ — - < z ( / c ) + e. 
ťo ^ lo 

On the other hand, putting fe2 = 0 in (7.1) we obtain 

t0 / v / x £ 0£ 

V/ce X, - e > x0(fc) + t0z{k) - t0- + y • 

Thus 

\/keK, z{k)-^<z{k)-^^^< --xQ{k). 
2 t0 t0 

Therefore, if x = —^x0, , then x satisfies the statement of the Lemma. • 
Proposition 7.3. Let X be a Banach space, which is an 1-unconditional direct 

sum of a family [Xa : a e si} of WCG Banach spaces, we say, X = ̂ ae j^ 0 Xa. 
Then 

(A) X has 2-control inside its bidual X**. 
(B) If the spaces Xa are reflexive and X := ]£a&c/ 0 / , X a (that is, X is the 

direct tCrsum of the family {Xa: a e si}), then X has 1 -control in its bidual X**. 
Proof We adopt the notation of the above paragraphs. So, let Y0 = £aet£/ 0 

0 X* X** = h(Y*) 0X)L, etc. Observe that in the case (B) we have F0 = J^^ 0 
0(.OX* that is, Y0 is the direct c0-sum of the subspaces {X*: a e si}. Let Ka be 
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& w-compact subset of Xa such that OeKa and Xa = [I£a]9 a E J / . In the case (B) 
we pick Ka := IJ(Xa). Suppose that there exist a w*-compact subset K <= B(X**) 
and some real numbers a9 b > 0 such that 

(1) dist(cow*(&),X) > b > 2a > 2dist(K9X) > 0 in the case (A). 
(2) dist(cow*(X),X) > b > a > dist(K9X) > 0 in the case (B). 
By Lemma 2.3 we have the following fact. 

Fact There exist ijjeS(X***) and z0ecow*(K) with inf i/t(z0 - X) > b (and 
so \\f e S(X***) n X1), and a w*-compact subset 0 ^ H cz K such that for every 
w*~open subset V of X** with F n II ^ 0 there exists £ e cow* (V n H) such that 
<^0 > b. 

Now we proceed step by step: 

Step 1. By the Fact there exists a vector ^ ecow*(II) such that <ir
/
9^i> > &. 

Since B(X*) is w*-dense in JB(X***), we can find a vector xfe B(X*) such that 
<£bxf> > b and another vector r\x e H so that (j\X9xf) > b. Let ^x = vx + wx with 
vx e h(Y<?) and wx e Y0. Then a > dist(f/l9X) > dist(riuh(Y^)) = HwJ, whence 

<t>l9xf> = <r/bxf> - <wl9xf> > b - a. 

As <ii?x*> = Yj^E^v\o{xfa} > b — a, we can find a finite subset s#x c J / such 
that, if y- is the restriction of xf to ^aG,P/, 0 Xa (so y, = X ^ , xfa e 
e B d , . ^ 0 X?) cz B(y0)), then <r?b};1> = (vhyx) > b - a. 

Step 2. Let Vx = {wel** : <M,yi> > h — a}9 which is a w*-open subset of 
X** with Vx n LI # 0, because ^ e ^ n II. By the Fact there exists 
£2ecow*(Vx n II) with <i/t9£2> > fe. Let 0 < 2a, < 2"1 A «^,£2> - 6) A 
A (a(dist(K9Z))~1 - 1). Consider in X** the subset 1+:= {&} u (£*=.<•, -K*)-
Clearly I^ is a w-compact subset of X**. Moreover, in the case (B), we have 
^CC*e^i ® i -̂ a) ^ -̂ - Now by the above Lemma 7.2 there exists a vector x*e X* 
such that ||x*|| < 1 + e, and 

VfeeL,, <*M> ~" £i < <k9x?> < <*M> + £J. 

In particular, <4,x*> > & + £t and |<x2tfc>| < ej < 2~2
9 Vfc e ]jrae<^.Ka, because 

i/t(k) = 0. Since <£2,x*> > & + £i, we can choose ^eVxr\H such that <r/2,x*> > 
> b + ex and also <r/2?yi> > b ~ a because ^2e Vx. Let r/2 = tj2 + w2 with 
v2eh(Y0*) and w 2 e t Observe that ||w2|| = dht^29h(Y0*)) < dist(r/2,X) < 
< dist(K9X) < a and |<w>,x*>| < (1 + e ^ d i s t ^ X ) < a. Now we choose 
y2 and s/2 *n the cases (A) and (B) as follows: 

Case A, We have 

<%x2*> = <r/2?x2*> - <w29x?*> > <r/29x2*> - |<w29x2*>| > b - a. 

Thus, as <t̂ ?x*> = Xa&X^x*a> > b — a, we can find a finite subset s/2 of 
s/ satisfying s/x c J / 2 C J / such that, if y2 is the restriction of x*to ^ae,o/2 0 ATa 
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( s o yi = Z«e.-/2x*«eZ«e^2 © ^ ^ o with | | j / 2 | | < 1 + e,), then <?fey2> = 
= <%y2> > b — a. Observe that for every fce \JaE^xKa we have ^(fc) = 0, 
whence 

Ky2,fc>l = Kx2tfc>l<£i <2-\ 

Case B. Let y2l : = xf \ YjaEsJl 0 , Xa (that is, y21 = YJ***I X*«)
 a n d ^2 = ** ~ 

- y21. Since |<x2tfc>| < eb Vfc e X ^ &a, and B Q ^ 0 i Xa) cz J ] a e j / i & a , then 
Il72iII < fii- So 

<^722> = <>fe5x*> ~ <w2?x*> - <%72i> > <%,x*> - BX - a > b - a. 

Since (v2, y22> = Zae..<*wi <u2a>**a> > b — a,- we can find a finite subset J / 2 cz s$\s£x 

such that, if y2 is the restriction of x* to YJ*** 0 Xa (so y2 = %E,^2x*ae 
e^'s^2 0 X*cz Y0 with ||y2|| < 1 + ei), then <?foy2> - <^,y2> > b - a. 

Further we proceed by iteration. We obtain the sequences {yk:k> 1} cz Y0? 

{ffc : fc > 1} cz K and { j ^ : fc > 1}, s$k cz j ^ , fulfilling the following conditions: 

Case A. In this case we have: 
(i) The finite subsets $4k of s/ satisfy s&k cz s/k+] for fc > 1. 

(ii) yk e Y^^k 0 X* cz Y0? ||yfc|| < 1 + £/c_l9 fc > 2, and <^,y„> > b - a for 
j > fc with j , fce (U 

(ill) For every h e [jae^kKa we have Kyk+Uh}\ < 2~k~~\ Vfc > 1. 

Let s/0 : = (J„> 1 •£/„, X 0 : = Xae.o/0 0 ^ a and let P0 :X -» X0 be the canonical 
projection on X0, with norm ||P0|| = 1. The space X admits the monotone 
decomposition 

X = X o 0 X 1 where Xx:= Z Xa. 
oce.otWo 

Therefore we get the following monotone decompositions 

X* = X* 0Xf , X** = X** 0Xf9* X*** = X*** 0 X f **, etc., 

with projections P0: X -» X0, P0*: X* -> X0* P** : X** -• X** P*** : X*** -> 
-*X0***, etc. Observe that P$(yk) = yh Vfc > 1, that is, y/ceX* = P$(X*\ 
Vfc > 1. Let r\0 be a w*-cluster point of the sequence {f]k:k > 1} in X**. 
Obviously rj0eK. Moreover, since <ty-,y*> > b — a, Vj > fc, we get 
<ffo,y*> > b — a, Vfc > 1. Let cp0 be a w*-cluster point of {yk: k > 1} in X***. 
Then 

(i) q>0eB(X***). Actually <D0eP***(X***) - X0***, that is, P***(cp0) = <Po-
(ii) By construction cp0 \ Ka = 0, V a e i 0 . Thus ^ 0 e X 0 , because lJae>Q/0Ka 

generates X0. 
(iii) <<j0b,i7o> > b — a because <r/0?y/<> > ft — a, Vfc > 1. 
Let W:= P**(K) CZ J3(X**), which is a w*~compact subset of X**, and 

w0 = P**(f/o)- Obviously W0G W 
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Cjaim 1. dist(w09X0) < a. 

Indeed, let x e X be arbitrary. Then 

dist(w0?X0) > ||w0 - P0**x|| = | | P J * M - P$*x\\ < \\tlo - x\\ . 

That is, dist(w0X0) < dist(r/0,X) < dist(K9X) < a. 

Claim 2. dist(w0,X0) > b — a. 

Indeed, as <pQ eB(X***) n Xfr and 

<%>w0> = <(po,P**rio> = <-Po***<Pô o> = <<Wb>?o> >b - a9 

we conclude that dist (w09 X0) > b — a. 

As a < b — a we get a contradiction which proves the statement in the case (A). 

Case B. In this case we have: 

(i) The finite subsets s/k9 k > 1, of s/ are disjoint. 
(iJ) yk e ]>.** 0 o ^ ? <= >o, Ib/dl < 1 + £*-i, fc > 2, and <r//9 yk} > b - a for 

j > k with j, fee N. 
(iii) For every n e N w e have IIXX i J7* II < 2. 

Let ?/0 be a w*-cluster point of the sequence {%: k > 1} in X**. Obviously 
rj0eK. Moreover, since (j]j,yk> > b — a9 Vj > k, we get <ffo-yfc> > fo — a > 0, 
Vk > 1. Thus <r/o,X"=iJ;/> -̂  n{h ~ 4 v ^ ^ 1- S i n c e l & i t t l l < 2, Vn > 1, we 
get a contradiction which proves the statement (B). • 

Proposition 7.4. Let X be a Banach space, which is the 1-unconditional direct 
sum X = Yjxest 0 Xa of the family {Xa: a e s/} of WCG Banach spaces. If 
K cz X** is a w*-compact subset such that K n X is w*-dense in K, then 
dist (covy* (K)9 X) = dist (K9 X). 

Proof The proof is analogous the the one of Proposition 7.3, but in this 
case, as K n X is w*-dense in K9 we can choose rjk+} in Vk n K n X with 
<%+i,*?+i> > b so that r\k = vk9 wk = 0. • 

Definition 7.5. Let X be a Banach space which admits the decomposition 
X == X«e^ 0 Xa as an 1-unconditional direct sum of closed subspaces Xa. We 
say that the decomposition X = ])>e.^ © Xa is of countable type if for every 
u e X* the support supp (u):= {ae s/ :ua =>-= 0} of u is countable, (ua)ae^ being the 
set of coordinates of u, that is, ua: = u \ Xa = u o Pa, where Pa: X -> Xa is the 
canonical projection. 

Lemma 7.6. Let X be a Banach space which admits a decomposition 
X — Ya*erf 0 ^« as an 1-unconditional direct sum of the closed subspaces Xa. 
The following statement are equivalent: 

(1) The decomposition X = ^ a e c / 0 Xa is not of countable type. 
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(2) X has an isomorphic copy of/x(Hx) disjointly disposed with respect to the 
decomposition X = ]Ta&5/ 0 X^ that is, there exists a subset six cz si with 
cardinality \six\ = X, and for each a e six an element va e Xa so that the family 
{va: OLE six) is equivalent to the canonical basis of /x (Hx). 

Proof (1) => (2). If the decomposition X = ]Ta6j/ 0 Xa is not of countable 
type, there exists some ueX* such that the subset si0: = {ae si :ua ^ 0} 
satisfies \si0\ > K]9 where ua := u \ Xa = u oPa and Pa: X -» Xa is the canoni­
cal projection. By passing to a subset if necessary, we can find a real number 
£ > 0, a subset six a si0 with \six\ = K, and a family {va:aesix} with 
va e B(Xa) so that (u,va} = <ux, va} > £. This fact proves, by a standard argument, 
that the family {va:aesix} is equivalent to the canonical basis of /x(^x) and 
generates a copy of /x (Kt), which is disjointly disposed with respect to the 
decomposition X = £ a e ^ 0 Xa. 

(2) => (1). Let si\ c ^ b e a subset with cardinality \six\ = Kj and for each 
a e six let va be an element of Xa so that the family {va: a e six} is equivalent to 
the canonical basis {ea: a e six) of /x(six). Let T: /x (six) -» X be the isomor­
phism between /x (six) and the closed subspace generated by {va: a G six} so that 
T(ea) = va. Since T*: X* -> ^a,(«^i) is a quotient mapping and so 
T*(X*) = ^oo(^/i)» if W o G ^ ^ i ) is such that w0(a) = 1, Va e siu there exists 
a vector u e X* such that T* (u) = w0. Then for every a e six we have 

<w9t;a> = <w,Tea> = (T*u,ea) = <w0?ea> = 1, 

and this proves that u is an element of X* that does not have countable support 
with respect to the decomposition X = £aeiC./ 0 ^a- • 

Proposition 7J. Let X be a Banach space that admits a decomposition of 
countable type X = ]T/e/ 0 X{ as an 1-unconditional direct sum ofWLD (weakly 
Lindelof determined) closed subspaces {X;: i e / } . Then X is WLD and so for every 
convex subset C c l , every w*-compact subset K of X** and every boundary 
B c: K we have dist (cow* (K\C) = dist (co (B)9 C). 

Proof It is well known that the dual unit ball of a WW space is w*-angelic (see 
[1]). So by Proposition 4.9 it is enough to prove that X is WW, that is, that for 
some set J there exists an injective continuous linear operator T:X*-* 
-> /r

(J0(j) := [fe /^(J): supp (f) is countable} which is w* to pointwise conti­
nuous (see [1, Definition 1.1]). Since each X, is WW, there exist a set Jt and an 
injective linear operator Tt: X*~-> /^ (J,) which is w* to pointwise continuous and 
satisfies || 7-|| < 1. We assume that the family of sets {J{: i e /} is pairwise disjoint, 
and put J : = (J /6 / Jf, Define T: X* - /aj (J) such that, if x* e X* and x*e X? is 
the restriction x*:= x* \ Xh then Tx* = (T?(xf))/e/. Clearly T is an injective 
norm-continuous operator which is w* pointwise continuous. Moreover, as the 
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decomposition of X is of countable type, we have that supp (Tx*) is countable for 
every x* e X* and this completes the proof. • 

In the sequel we apply the above results to the class of order-continuous Banach 
lattices. First, we see the well known fact that, if X is an order-continuous Banach 
lattice, then X is an 1-unconditional direct sum of disjoint closed ideals which are 
FVCG. 

Lemma 7.8. Let X be an order-continuous Banach lattice with weak unit 
e>0. Then X is WCG. 

Proof. It is well known (see [23, p. 28]) that the interval [0, e] : = {xe X : 0 < 
< x < e} is a w-compact subset of X. Let us see that X = [ [0 ,e ] ] , that is, X is 
the closure of the space generated by [0, e]. Pick a positive element x e X + . Then 
ne A x | x for n -> oo, whence ||x — ne A X | | | 0 because X is order-continuous. 
So l jn>i[09ne] = (J,2>iw[0?e] is dense in the positive cone X + . As 
X = X + — X + , we conclude that X is the closure of the subspace generated by 

[0,4 • 
Lemma 7.9. If X is an order-continuous Banach lattice, then X is the 

1-unconditional direct sum X = ]£a&^ 0 X a of a family of closed ideals 
{Xa: a e s/} mutually disjoint, such that each X a has weak unit and so it is WCG. 

Proof By [l.a.9] of [23] X admits the expression X = £a&c/ 0 Xa as a direct 
sum of a family of closed ideals mutually disjoint {Xa: a e s/} (so as an 
1 -unconditional direct sum), such that each Xa has weak unit. By the previous 
Lemma 7.8 we get the statement. • 

Proposition 7.10. Let X be an order-continuous Banach lattice. If K is 
a w*-compact subset of X**, then dist(cow* (K)9 X) < 2dist(K9X) and, if K n X 
is w*-dense in K, then dist (covv* (K)9 X) = dist(K9X). 

Proof Apply Lemma 7.9, Proposition 7.3 and Proposition 7.4. • 

Proposition 7.11. Let X be an order-continuous Banach lattice that does not 
have a copy of /X(HX). Then X is WLD and so for every convex subset C cz X, 
every w*-compact subset K of X** and every boundary B a K we have 
dist (cow* (K)9 C) = dist (co (B)9 C). 

Proof Clearly, if X is an order-continuous Banach lattice that does not have 
a copy of tx (Kj), then X admits, by Lemma 7.6 and Lemma 7.9, a decomposition 
of countable type X = ]Ta&J/ 0 X a as an 1-unconditional direct sum of WCG 
closed ideals Xa. So, this result follows from Proposition 7.7 • 

Proposition 7.12. Let X be a Banach space with an 1-unconditional basis 
{ei :ie 1} equivalent to the canonical basis of £x (/). Then X has I-control in its 
bidual X**. 
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Proof. The proof is analogous to the one of part (B) of Proposition 7.3, putting 
Xt = Vei\-> *e I> anc i taking into account the fact that X* and the subspace YQ of 
X* are canonically isomorphic to ^ ( i ) and c0(l)9 respectively. D 

A Banach space X has an 1-symmetric basis {3 :ie 1} whenever X = 
= [{^: i6 I}] and for every countable subset J a I the family {ej'.jeJ} is 
a countable 1-symmetric basis of [{3 : j e J}] (see p. 113 of [22]) for the definition 
of a countable 1-symmetric basis). 

Proposition 7,13. Let X be a Banach space with an 1-symmetric basis. Then 
X has 1-control in its bidual X**. 

Proof Case 1, Let every element of the dual X* have countable support. In 
this case the result follows from Proposition 7.7. 

Case 2. Suppose that there exists a vector ue B (X*) with uncountable support. 
By Proposition 7.12 it is enough to prove the following claim. 

Claim. If there exists a vector ueB(X*) with uncountable support, then the 
1-symmetric basis {3 : i e 1} of X is equivalent to the canonical basis of €x (I). 

Indeed, since supp(w) := {ie I: u(e}) ^ 0} is uncountable, we can find a real 
number s > 0 and an uncountable subset J cz supp (u) such that \u(e^\ > e, Vi e J. 
Let us prove that the family {3 : i e J} is equivalent to the basis of £x (J). Suppose 
that the basis {3 : i e J} is normalized and choose a vector of the form Z*<fc<n ^keik> 
ik e J. Let ek = +1 so that u(Xkskeik) -= |(A,cw(e//c)| > e\Xk\, 1 < k < n. Then 

Z 1̂*1 ^ 11 Z v.-j = 11 Z h^ik\\ > 
l<k<n \<k<n \<k<n 

> |M( X fakefk)\ > « Z M*l> 
1 < /C < /? 1 < /< < H 

and this implies that the family {3 : i e J} is equivalent to the basis of €x (J). As the 
basis {ei: ie 1} of X is symmetric, finally we conclude that {3 : i e 1} is equivalent 
to the canonical basis of fx (J), and this proves the Claim and completes the proof 
of the Proposition. • 

8. The control inside f^(1) 

Throughout this Section H will be a Hausdorf completely regular topological 
space and Ch(H) will denote the Banach space of continuous bounded functions 
f:H-+M with the supremum norm. We consider Ch(H) as a closed subspace of 
(C(H)> II'II00). w h a t is the control of Ch(H) inside (fJ(H), IHL)? This problem 
has been studied in [4] and [16]. In this Section we use the Simons inequality to 
extend Proposition 3.1 of [16]. 
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If fc e H let *Vk denote the family of open neighborhoods of fc in H. Now, we 
define the oscillation Osc(f9k) of f: H -* U in k e H as: 

Osc (f k) = lim (sup {f (0 - f (/'): i,j e V}). 
Ve'f'k 

The oscillation of / in H is: 

Osc(f) = sup {Osc(f fc): fc G H}. 

J / H is a normal topological space and / e ^ ^ H ) , we have dist(/Ch(H)) = 
= |08C(/) (see [3, Proposition 1.18, p. 23]). We say that a topological space 
H belongs to the class g (for short, H G gf) if for every A a H x H and every 
fteH, with (ft, ft) e 4 , there exist ( i eH and a sequence (ocn)n» in v4 such that 
an -* (d,d) as n -» oo. So, H is in g provided: (1) H is metrizable; (2) H satisfies 
the first axiom of countability; (3) H x H is a Frechet-Urysohn space. 

Proposition 8.1. Let H be a normal topological space with H e $, W cz / ^ (H) 
a w*-compact subset and B cz Wa boundary for W Then 

dist(cow*(W),Ch(H)) = dist(B,Ch(H)). 

Proof Suppose that there exist a w*-compact subset W cz B (faj (H)), a bound­
ary B cz PVand two real numbers a, b > 0 such that 

dist(cow*(FV),Q(H)) > b > a > dist (B, Ch (H)). 

Pick f0ecow*(W) with dist(/0, Ch (IT)) > b. Then there exists a point k0e H such 
that \Osc(f0,k0) > b. So, there exist e > 0 and, for every Vei^k°, two points 
zV,/V̂  l^such that 

fo(h) -/o(/V) > 2b + e. 

In particular, (fc0, fc0) G {(zVjV): Vei^}. Since He% there exist a sequence 
{(Ww): w ^ 1} <= {(WV) • ̂ e / "̂fc°} and a point doGn7 such that (inJn) -• (h0,h0). 
For every n > 1 let T„: C ( H ) -• R be such that T„(/) = /(z„) - /(/„), for all 
fe£^(l). Clearly, T„ is a linear mapping which is ||-||-continuous weak*~conti-
nuous and ||TJ < 2. Moreover, we have Tn(f0) > 2b + e, Vw > 1, and 
l im^T^ f) = 0 for every fe Cb(H). 

Claim* For every ft e B we have lim sup,7_*CX;T„(/)) < 2a. 

Indeed, fix jSeJB and, as dist(5,Q(H)) < a, find feCh(H) such that 
||/i - / | < a. We have 

lim sup Tn((i) = lim sup(Tn(/) + Tw(/? - /)) = 
n -* oo n —> oo 

= lim Tn (f) + lim sup Tn (p — f) < 2a, 
n—>oo «—>oo 

where we have applied that lim„_̂ QC T„(f) = 0, ||T„|| < 2 and ||j3 — f | | < a. 
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By Simons inequality [28, 2. Lemma] we have 

sup [lim sup Tn (jB)] > inf [ sup g(k):geco ((Tn)n*ij] . 
fieB /i->oo /cecow*(VV) 

So there exists some g e co((T^)n>l)9 we say, g = Yjn=\KTn with Xn > 0 and 
£ j = i A n =l , such that supkG---w* w g (/c) < 2a + e. On the other hand, as 
f0ecovv*(PV) and T„(f0) = f0(in) - f0(jn) > 2b + e we have 

sup g(k)> f u ( / o ) > 2 6 + e, 
/ceco"'*(VV) n = l 

whence we get 2a + e > 26 + e, a contradiction, and this completes the proof. 

• 
Corollary 8.2. Let K he a scattered compact Hausdorff space such that 

i£(2) = 0. Then for every w*-compact subset W a {^ (K) and every boundary B of 
W we have dist(B, C (K)) = dist (covv* (W\ C (K)). 

Proof By Proposition 8.1 it is enough to prove that K e %. As K(2) = 0, then 
K is the topological sum of a finite number of disjoint clopen subsets, say 
K = 0 "=, &,, each Kf being the Alexandrov compactification K, = aJf of 
some discrete set Jr So, K has property g if and only if each aJ, has. Now apply 
the trivial fact that the Alexandrov compactification aJ of a discrete set J has 
property g. • 

References 

[1] ARGYROS, S. AND MERCOURAKIS, S., On weakly Lindelof Banach spaces, Rocky Mountain J. Math., 
23 (1993), 395 -446 . 

[2] BALCAR, B. AND FRANEK, F., Independent families in complete Boolean algebras, Trans. Amer. 
Math. Soc, 274 (2) (1982), 6 0 7 - 6 1 8 . 

[3] BENYAMINI, Y. AND LINDENSTRAUSS, J., Geometrie Nonlinear Functional Analysis, Vol. I, Amer. 
Math. Soc, Colloquium Publ., Providence, RI, Vol. 48 (2000). 

[4] CASCALES, B., MARCISZEWSKI, W., AND RAJA, M., Distance to spaces of continuous functions, 

Topology Appl., 153 (13) (2006), 2303-2319. 
[5] CASCALES, B., MANJABACAS, G., AND VERA, G., A Krein-Smulian type result in Banach spaces, 

Quart. J. Math. Oxford Ser., (2), 48 (1997), 161 -167. 
[6] CASCALES, B. AND SHVYDKOY, R., On the Krein-Smulian Theorem for weaker topologies, Illinois 

J. Math., 47 (2003), 957 -976 . 
[7] CHOQUET, G., Lectures on Analysis. Vol. II, W. A. Benjamin, Inc., New- York, 1969. 
[8] DIESTEL, J., Sequences and Series in Banach Spaces, Springer-Verlag, New-York, 1984. 
[9] COMFORT, W. W. AND NEGREPONTIS, S., Chain Conditions in Topology, Cambridge Tracts in Math. 

79, Cambridge Univ. Press, 1982. 
[10] FABIAN, M., Gateaux differentiability of convex functions and topology. Weak Asplund Spaces, 

Canadian Mathematical Society Series of Monographs and Advanced Texts (Wiley-Interscience, 
New-York, 1997). 

45 



[11] FABIAN, M., HAJEK, P., MONTESINOS, V., AND ZIZLER, V., A quantitative version of Krein's 

Theorem, Rev. Mat. Iberoamer., 21(1) (2005), 2 3 7 - 2 4 8 . 
[12] GRANERO, A. S., An extension of the Krein-Smulian Theorem, Rev. Mat. Iberoamer., 22 (1) (2006), 

9 3 - 1 1 0 . 
[13] GRANERO, A. S., The extension of the Krein-Smulian Theorem for Orlicz sequence spaces and 

convex sets, J. Math. Anal. AppL, 326 (2007), 1383-1393. 
[14] GRANERO, A. S., HAJEK, P. AND MONTESINOS, V., Convexity and w*-compactness in Banach 

spaces, Math. Ann.,328 (2004), 6 2 5 - 6 3 1 . 
[15] GRANERO, A. S. AND SANCHEZ, M., The class of universally Krein-Smulian Banach spaces, Bull, 

London Math. Soc, 39 (4) (2007), 529 -540 . 
[16] GRANERO, A . S. AND SANCHEZ, M., Convexity, compactness and distances, Methods in Banach 

Spaces Theory, Lecture Notes Series of the London Math. Soc, Edt. Jesus M. F. Castillo and 
W. B. Johnson, Vol. 337 (2006), p. 2 1 5 - 2 3 7 . 

[17] GRANER, A. S. AND SANCHEZ, M., Distances to convex sets, Studia Math., 182 (2007) 165 — 181. 
[18] GRANERO, A. S. AND SANCHEZ, M., The extension of the Krein-Smulian theorem for order 

continuous Banach lattices, Banach Center Publications, Vol. 79, Proceedings of Function Spaces 
VIII (Bedlewo, 2006), Ed. H. Hudzik and M. Nowak, Warszawa (2008). 

[19] GRANERO, A. S. AND SANCHEZ, M., Convex w*-closures versus convex norm-closures in dual 
Banach spaces, J. Math. Anal. AppL, doi:10.1016/j.jmaa.2008.02.030. 

[20] HAYDON, R., Some more characterizations of Banach spaces containing i v Math. Proc. Cambridge 
Phil. Soc, 80 (1976), 2 6 9 - 2 7 6 . 

[21] LINDENSTRAUSS, J. AND STEGALL, C , Examples of Banach spaces which do not contain / , and 
whose duals are non-separable, Studia Math., 54 (1975), 81 —105. 

[22] LINDENSTRAUSS, J. AND TZAFRIRI, L., Classical Banach Spaces I, Springer-Verlag, Berlin, 1977. 
[23] LINDENSTRAUSS, J. AND TZAFRIRI, L., Classical Banach Spaces II, Springer-Verlag, Berlin, 1979. 
[24] NAMIOKA, I., Radon-Nikodym compact spaces and fragmentability, Mathernatika 34 (1989), no. 2, 

258-281. 
[25] SCHWARTZ, L., Radon measures on arbitrary topological spaces and cylindrical measures, Oxford 

Univ. Press, Tata Inst, of Fund. Research, 1973. 
[26] SEMADENI, Z., Banach spaces of continuous functions, Monografie Mat. 55 (PWN), Warzsawa, 

1971. 
[27] SIERPINSKI, W., Sur une suit infinie de fonctions de clase J dont toute fonction d'accumulation est 

non mesurable, Fund. Math., 33 (1945), 104-105 . 
[28] SIMONS, S., A convergence theorem with boundary, Pacific J. Math., 40 (1972), 703 — 708. 
[29] TALAGRAND, M., Sur les espaces de Banach contenant f] (T), Israel J. Math., 40 (1981), 324-330 . 
[30] WALKER, R. C , The- Stone-Cech compactification. Springer-Verlag, Berlin, 1974. 

46 


		webmaster@dml.cz
	2012-10-06T05:18:28+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




