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This paper is a survey of the series of talks given by the author in the 36" Winter School
in Abstract Analysis under the title “The Krein-Smulian Theorem and its extensions”.
Some results of this work are new but the mam part of them is taken from the papers
[12] —[19]. We investigate here whether, given a Banach space X and a convex subset
C of the dual X*, the distance dist(co"" (K),C):= sup {inf{|lk—c|:ceC}:ke
€0" (K)} from ©0""(K) to C is controlled by the distance dist(K,C), that is, if
dist (<6 (K), C) < M dist (K, C) for some constant 1 < M < oo not dependent on K,
where K is any weak* compact subset of X*. Actually, all the results obtained extend
in some way the classical Krein-Smulian Theorem and this fact justifies the title of the
present work.

1. Introduction

This paper is a survey of the series of talks given by the author in the 36" Winter
School in Abstract Analysis under the title “The Krein-Smulian Theorem and its
extensions”. The main part of this work is taken from the papers [12] —[19]. In all
these papers we investigate whether, given a Banach space X and a convex subset
C of the dual X*, the distance

dist (6" (K), C) : = sup {inf{|k — c| : c € C}: ke co"" (K)}
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from ©6""(K) to C is controlled by the distance dist(K,C), that is, if
dist (¢6"" (K), C) < M dist (K, C) for some constant 1 < M < co not dependent on
K, where K is any weak* compact subset of X*. Actually, all the results obtained
in the above papers extend in some way the classical Krein-Smulian Theorem and
this fact justifies the title of the present work. Recall that this theorem, with the
terminology of distances, states the following (see [8, p. 29]): if X is a Banach
space and K a weak* compact subset of X** such that dist (K, X ) = 0 (that is,
K is a weak compact subset of X), then dist(co”"(K),X) =0, that is,
0" (K)= X and so co"(K) is a weak compact subset of X and
0" (K) = o (K). Thus, looking at the Krein-Smulian Theorem with the termino-
logy of distances, it is natural to ask the following:

Question 1. If X is a Banach space and K a weak* compact subset of X**,
does the equality dist (¢6"" (K), X) = dist (K, X) always hold?

The answer is negative. Actually, we construct in Section 3 counterexamples
such that dist (co"” (K), X) > 3dist(K, X) > 0.

Question 2. Does there exist a universal constant 1 < M < oo such that
always dist(c0"" (K),X) < Mdist(K,X) for every weak* compact subset
K < X**?

The answer is affirmative. Actually, it holds true the following result, which
extends the Krein-Smulian Theorem: if K is a weak* compact subset of X** and
Z a convex subset of X, then dist(c0""(K), Z) < 5dist(K,Z); moreover, if Z n K
is weak* dense in K, then dist(co""(K), Z) < 2dist(K, Z). However, for many
Banach spaces X the equality dist(co"" (K), Z) = dist(K, Z) holds true for every
convex subset Z < X and every weak* compact subset K of X** as we will see
later on.

We go a step further and investigate the control of the distance dist (c0"" (K), C)
by the distance dist (K, C) when C is a convex subset of a dual Banach spaces
X* and K is a weak* compact subset of X*. The behavior of the distance
dist(c6"" (K), C) with respect to the distance dist(K,C) varies. If C is a weak*
closed convex subset of X*, it is very easy to see that dist(co""(K),C) =
= dist(K, C). However, if C = X* is not weak* closed, all situations are possible.
In any case, as we will see later, the control of C inside X* and the existence in
C of a copy of the basis of ¢ (c) are closely connected.

The paper is organized as follows.

e In Section 2 we study the control of the convex subsets C of a Banach space

X inside its bidual X**.

e In Section 3 we construct some counterexamples, namely, two weak*
compact subsets K, K, of a bidual Banach space X** such that: (i) K; n X
is weak* dense in K, dist(Ki,X) =5 and dist(co""(K),X) = 1; (ii)
dist (K2, X) = 5 and dist (c6"" (K,), X) = 1.
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e In Section 4 we study the control of convex subsets of a dual Banach space
X* inside X*.

e The Section 5 is devoted to study the class of universally Krein-Smulian
Banach spaces.

e In Section 6 we study the convex weak*-closures versus the convex

norm-closures in dual Banach spaces.

e The section 7 is devoted to study the control of X inside its bidual X ** when

X is an 1-unconditional direct sums of Banach spaces and a Banach lattice.

e In section 8 we study the control of some convex subsets of the dual space £, (I).
Our notation is standard. If A and I are sets, a € A" and i € I then ; (or ai)) denotes
the i-th coordinate of a and m;: A" — A the i-th. projection mapping such that
ni(a) = a. |I| is the cardinality of I and c¢:= |R|. BI denotes the Stone-Cech
compactification of I (the set I is endowed with the discrete topology) and
I*:= BN If f:1 — R is a bounded function, then f'e C(BI) is the Stone-Cech
continuous extension of f to the all SI.

We shall consider only Banach spaces over the real field. If X is a Banach space,
let B(a;r):= {xe X : ||x — al| < r}be the closed ball with center at a € X and ra-
dius r > 0. B(X) and S (X) will be the closed unit ball and unit sphere of X, respect-
ively, and X* its topological dual. If A is a subset of X, then [A4] and [A4] denote
the linear hull and the closed linear hull of 4, respectively. A subset A of the Banach
space X is said to have a copy of the basis of /i (c) if 4 contains a family of vectors
{ai:i < ¢} which is equivalent to the canonical basis of ;(c). The weak* topology
of the dual Banach space X* is denoted by w* and the weak topology of X by w.
If 4 is a subset of X*, co(A4) denotes the convex hull of the set 4, TO(A) is the
|I--closure of co(A) and €6""(A4) the w*-closure of co(A). Given 1 < M < oo,
a convex subset C of X* is said to have M-control inside X* if dist(co"* (K), C) <
< M dist(K, C) for every w*-compact subset K of X*. C is said to have control
inside X* if C has M-control inside X*, for some constant 1 < M < oo.

If K is a w*-compact subset of a dual Banach space X* and p a Radon Borel
probability on K, then r(u) will denote the barycenter or resultant of u (see
[7, p. 115]). Recall that: (i) r(u) e 0""(K); (ii) x* € 0" (K) if and only if there
exists a Radon Borel probability y on K such that r(u) = x*; (iii) r(u)(x) =
= [k x*(x)du(x*) for all x € X.

We refer the reader to the book [10] for the definition and properties of weakly
compactly generated (WCG) and weakly Lindelof determined (WLD) Banach spaces.

2. The control of convex subsets of X inside X**
The convex subsets of a bidual Banach space X**, in general, fail to have
control inside X**. For example, if X is a Banach space such that X* contains

a copy of /,, then there exists a w*-compact subset H of X** such that
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dist (co"* (H),co(H)) > O (see [20]). However, when we restrict ourself to the
convex subsets C of the Banach space X, we will see in this section that there
exists control inside X**. We begin with the calculation of the distance dist(x, C),
when C is a convex subset of a Banach space X and x € X.

Leynma 2.1. Let X be a Banach space, C a convex subset of X and x € X.
Then the distance dist(x, C) from x to C satisfies

dist(x,C) = sup inf{|p(x — ¢)|:ce C}.
@eS(X*)

Moreover, if x ¢ C, then even dist(x, C) = supgesix+inf ¢ (x — C).

Proof. If we assume that x ¢ C, the proof of the statement is a simple
application of Banach separation theorem. If x € C, then for every ¢ € S(X*) we
have inf {|p(x — ¢)|: c € C} = 0, whence

dist(x,C) = 0 = sup inf {|p(x — ¢)|:ce C}. O
@eS(X*)

The following lemmas are basic for the proofs of next propositions.

Lemma 2.2. Let X be a Banach space and D a convex subset of X. Then for
every ze D" < X** we have:

dist(z, D) < 2dist(z, X).

Proof. Suppose that dist(z, D) > 2dist(z, X). Then

(i) for some a > 0 we have dist(z, D) > 2a > 2dist(z, X) and

(ii) there exists a vector w € X such that [|w — z|| < a (because dist(z, X) < )
and so dist(w,D) > a (otherwise, if dist(w,D) < a, we would get dist(z,D) <
< |lw — z|| + dist(w, D) < 2a, a contradiction).

Since dist(w,D) > a, by Lemma 2.1 there exists x* e S(X*) such that
inf {x*(w — d):de D} > a. Let {d}is = D be a net such that di = z. Then
w —di > w — z and so x*(w — d;) —> x*(w — z). Hence x*(w — z) > a
and so |w — z| > a, a contradiction. Thus, we get dist(z, D) < 2dist(z,X). [J

Lemma 2.3. Let X be a Banach space, C a convex subset of X*, K a w*-com-
pact subset of X* and assume there exist two numbers a,b > 0 such that:
dist(K,C) < a < b < dist (co"" (K),C).

Then there exist zo € €0 (K) and f € S(X**) with infyy (zo — C) > b such that, if
1t is a Radon probability on K with barycenter r(u) = zo and H = supp (u) is the
support of u, for every w*-open subset V of X* with Vo H # () there exists
¢ eto” (Vn H) such that inf y (£ — C) > b.

Proof. Without loss of generality, we suppose that K < B(X*). Choose
z €¢0""(K) such that dist(z, C) > b. By Lemma 2.1 there exists i € S(X**) such
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that inf  (z — C) > b + ¢ for some ¢ > 0, that is,  (z) > b + ¢ + sup ¥ (C). By
the Bishop-Phelps Theorem, there exists a vector ¢ € S(X**) with |y — @[ < ¢/4
such that ¢ attains its maximum on ¢0""(K) at some point zo € €0"" (K). So:

¢ (20) = ¢(2)

WD)+ (6 — W) > supy(C) +b+e—re= (21

3 4
supy (C) + b + 75

whence we get

0(z0) = (eo) + (0 — 6)(zo) > supy (C) + b + 3¢ — 2= supy(C) + b + 3¢,
that is,

infy(zo — C) > b +%£. (2.2)
Thus dist (zo, C) > b + 3¢ and 50 zo ¢ C and zo ¢ K (because dist(K,C) < a < b).
Let 1 be a Radon probability on K with barycenter r (u) = zo and let H := supp (1)
be the support of y. Assume that there exists a w*-open subset V of X* with
Vn H # 0 such that inf y (¢ — C) < b (that is, Y (¢) < b + sup y (C)) for every
£eTo” (Vn H). Let iy = u | V. H denote the restriction of  to Vn H, that is,
11 (B) = u(B n Vn H) for every Borel subset B < K. Let pi>:= pu — py. Observe
that u; and p» are positive measures such that

(i) w # 0, because @ # Vn H = V supp(u), and

(i) w2 # O because, if we assume u, = O (that is, u = u; = pu| ¥V~ H), then
zo = r(u) € 6" (V' n H) and so inf y (zo — C) < b, a contradiction to (2.2).

Thus, we have the decomposition u = p; + i such that 1 = |ul| = |l +
+ |luzll with |lui]] # 0 # ||u2ll. So, we can write:

20 = r(u) = - r (”H “)+ K (HZEH).

Since (i) ec_o‘“’ (Vn H), then  (r (1)) < b + sup ¥ (C) by hypothesis. Hence
O(risy) < b + je + supxp( ) (because | — ¢| < &/4). Thus, taking into
account that r(m) €T0"" (K), ¢ (r (1)) < ¢ (20) and (2.1), we get

da) = ”W'(b( <llulll)) * ”“2||¢< (”Mz”)) =
< [l (b + %s + suplP(C)) + a2l (20) < Nl (20) + a2l (20) = ¢ (z0),

a contradiction, and this completes the proof. O

Proposition 2.4. Let X be a Banach space, C a convex subset of X and
K a w*-compact subset of X**. Then

dist(c6"* (K), C) < 5dist (K, C).
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Proof. Without loss of generality, we assume that 0 e C. Suppose that the
statement is not true and try to get a contradiction. So, assume that there exists
a w*-compact subset K of X** and two real numbers a,b > 0 such that

dist(co”" (K),C) > b > 5a > 5dist(K, C).
From Lemma 2.3 we have the following Fact:

Fact. There exists a functional € S(X***) and a w*-compact subset
0 # H < K such that for every w*-open subset V with V' H # ) there exists
£et” (Vn H) with inf (£ — C) > b.

Now we do the following construction step by step:

Step 1. Let Do = {0}. Applying the Fact to the w*-open subset Vg := X**, we
choose a vector & €0 (H) such that infy (& — C) > b. So, Y (&) > b +
+ sup Y (Do) = b. As B(X*)is w¥*-dense in B(X***), there exists x{e S (X*) such
that x{{&1) > b + max x¥(Do) = b. Let Wi:= {ue X**: u,x{) > b + max x¥(Do) =
= b}. Clearly, W, is a w*-open halfspace of X** such that & € Wi n o™ (H).
Thus, WinH # @ and so we can find a vector 5, € Win H. Since
dist (51, C) < a, we have the decomposition 11 = ni + 57 such that n} e C and
13 € aByx.

Step 2. Let D, = {gi}u Dy = Cand V;:= W, n V;, = W;. As V, is a w*-open
subset with ¥; n H # 0, by the Fact there exists a vector &, € 0" (V; n H) such
that infy (&, — C) > b and also inf (&, — Dy) > inf (¢, — C) > b because
D, = C. Since D, is finite and min (& — D;) > b, there exists a vector
x¥€ S(X*) such that min x§(&, — D;) > b, that is, x§(¢,) > b + max x¥(D,). Let
W= {ue X**: (u,x¥ > b + max x¥(D,)}. Clearly, W, is a w*-open halfspace
of X** such that &, € W, n 6" (V; n H). Thus Wy n V; n H # () and we can find
meW,n Vi H. So, x§(n,) > b + max x¥(D,), that is, min x¥(y, — D;) > b.
Moreover, min x¥(n, — D) > b because 1, € V;. Since dist(n,, C) < a, we have
the decomposition 7, = 13 + #3 such that 1} € C and nj € aB(X**).

Further, we proceed by iteration. We get the sequences {x#,.; = S(X*¥),
(=1 = H, Dy = {n} U Dy_y with m = ni + ni, nieC and nj € aB(X*¥)
k > 1, such that min x*(n, — D,_;) > b, for every k > i.

Let D = & (Us»; D) = C and:

K,={n:i> l}w* < (K + aB(X**) n b,
Let 1, be a w*-cluster point of {#}~;.
Claim 1. dist(n,, D) < 5a.

Indeed, clearly o€ H N (K, + aB(X**)). Observe that:

(i) Since K; = K + aB(X**), we get dist(K,,C) < dist(K,C) + a < 2a.

(i) Since K, = D", by Lemma 2.2 we get dist(K;,D) < 2 dist(K,,X) <
< 2dist (K, C) < 4a.
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Thus, as 1o € K; + aB(X**), finally we get dist (15, D) < 5a.
Claim 2. dist (1o, D) > b.

Indeed, let ¢ € B(X***) be a w*-cluster point of {x¥,.,. Since min x}(n, —
—D,_,) > b for every k> n, then minx}n, — D,_;) = b, ¥n > 1. Hence
inf ¢ (7o — D) > b and so dist (1o, D) > b by Lemma 2.1.

Since b > Sa we get a contradiction and this completes the proof. O

Proposition 2.5. Let X be a Banach space, C < X a convex subset of X and
K a w*-compact subset of X** such that K n C is w*-dense in K. Then
dist (c6"" (K), C) < 2dist(K, C).

Proof. Suppose that dist(¢6""(K),C) > b > 2a > 2dist (K, C) for some num-
bers a,b > 0. We follow the proof of Proposition 2.4 with the following changes.
As Cn K is w*dense in K and , nH # 0, k > 0, then ,nCn K # 0,
Vk = 0. Thus, we choose 1€ V, " K n C, k > 1, and put n; = 7, and n; = 0.
Hence, now K, = {n:k>1}" = {5:k>1}" satisfies K, = K and so
dist(K, C) < dist(K,C) < a, whence we obtain dist(K,, D) < 2a. Finally, every
w¥-cluster point 7, of {n,:k > 1} satisfies noeK,, dist(n,D) < 2a and
dist (1o, D) > b, a contradiction. N

3. Counterexapmles

In this Section 3 we construct a Banach space X and a w*-compact subset
H < X** such that dist(c6"" (H), X) > 3dist(H, X) > 0. This example together
with Proposition 2.4 show that the optimal constant 1 < M < oo such that
dist (0" (W), Z) <M dist(W, Z), for every Banach space X, every convex subset
Z < X and every w*-compact subset W < X**, satisfies 3 < M < 5. We also
construct a w*-compact subset K < X** with K n X w*-dense in K such that
dist (0" (K), X) > 2dist (K, X). So, this counterexample together with Proposition
2.5 show that M = 2 is the optimal constant M such that dist(co""(W),Z) <
< M dist(W, Z) for every Banach space X, every convex subset Z < X and every
w*-compact subset W < X** with Wn Z w*-dense in W.

Proposition 3.1. There exists a Banach space X fulfilling the following facts:

(A) There exists a w*-compact subset K B(X **) such that K nX is
w*-dense in K and dist(K, X) = 5 but dist(€0"" (K), X) = 1.

(B) There exists a w*-compact subset H < B(X**) such that dist(H,X) = 3
but dist(co"" (H), X) = 1.

Proof. Let ¢ = {0,1}" be the Cantor compact set and & := {0,1}*N =
= {0,1} U {0,1P U {0,1f U .... Let 4 be the Haar probability on {0,1}". If
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0 =(01,05...)e% and ne N, we put oy, = (01,05,...,5,) € L. If A = {0,1}", let
f4:% — {0,1} be the continuous mapping

1’ ifo-neA’
Voe b, fi(o) = { 0, ifO':n‘?éA'

For each n e N we define I, as
I,:= {fA c {0,1}" with 4] = 2" — n}.

Observe that I, is finite and [4f,dA = 1 — n2 " for each f,eI,. Let I := Unzlln.
Clearly, |I| = N, and so we can put I = {f, :m > 1}. We shall identify I with
N by means of the identification of m and f,,. So, instead of 7, (N) we also write
¢, (I). Note that:

(1) I separates points in %.

(2) Since each I, is finite and [,f,dA =1 — n27" for each f,el,, then
lim,, . .« /4, (0)dA(0) = L.

(3) Let {g;:j = 1,..., k} be a finite subset of . Then for each n > k, there are
f4 fz€1, such that f4(0;) = 0 and f3(s;) = 1 for each j = 1,..., k. Thus, if for
every o0 €€ we define O(0) = {fs€1:f4(0) = 0}, then |[Vi_,(s) O ()] = N,
where & = +1, (+1)0(0) = O(g;) and (—1)O(a) = N (o).

(4) For every f, € I there exists o € ¢ such that f,(o) = 1.

From (3) and (4) we get that the compact set (0 = (), O ()" satisfies
0 # O < I*:= BI\I. Let y : 4 > {0,1}} = B(/,,(I)) be the mapping

Vi=fyel, Yoeb, y(o)(i) = fu(o).

Clearly ¢ is an injective continuous mapping for the w*-topology of
{0,1} = ¢, (I), which coincides with the product topology of {0,1}'. Thus
D:=y(%) = {0,1}' is a compact subset homeomorphic with % such that
dl0 = 0,Yde D. Let ji:= (4) be the Radon Borel probability on D that is the
image of the Haar probability A under the continuous mapping s, and let
r(u) =:zpec0” (D) be the barycenter of u. Clearly, z,e[0,1]' and so
0 < %(p) < 1 for every pe I (recall that %, is the Stone-Cech continuous
extension of z, to the all fI).

Claim 0. Z,(p) = 1 for every pe I'* := BI\I.
Indeed, we know that for every i = f, € I we have

m(r (1) = | m(x)du() = | 7 0v(o)di(o) =
= [ v@Wdr(0) = | falo)di(o).

On the other hand, by (2) lim, ., [¢f4,(0)dA(c) =1 and this implies that
Zy(p) = 1 for every p e I*.

1> Zo(i) =
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For each m e N (which is associated with f, € I) we define
= {deD:n,(d) =1},D), = {deD:m,(d) = 0},m > 1,

T, 1, — R being the canonical m-th projection. We have u(D))— 1 and so
©(DY) = u(D\D,,) — 0 when m — oo. Indeed, if m e N, we have

p(ON= | m(@)du(x) = | m 0v(0)dr(o) =
= [ ¥ s) i) = | 11 (0)

By (2) we know that lim,, ., ¢/, (6)dA(6) = 1. Thus u(D}) — 1 when m — co.
Let X := {fe /., (I): /1 © = 0}. The dual space X* is

X* = (,(I) @) Mg (I*,0),

Mg (I*,0) being the space of Radon measures v on I* such that |[v|(¢) = 0 (P,
means the /-sum). Actually, 4 (I) @, Mg(I*,0) is a closed complemented
subspace of (£, (I)* = 4, (I) @, Mg (BI\I).

The bidual of X is X** =/, (I) ®. Mg(I* O)*, @, meaning the 7, -sum.
Let m;, m,: X** — X** be the canonical projections on the summands 7, (I) and
Mg(I*, O)*, respectively. Observe that the subspaces m;(X**)=/,(I) and
T (X**) = Mg(I*,O)* are w*-closed in X**. Moreover, the w*-topology
o (X**,X*) coincides on m, (X**) =/, (I) with the o (¢, (1), (I))-topology. If
x € X** we put x = (x;,X,), with 7, (x) = x, € £, (I) and 7, (x) = x, € Mg(I*, O)*.
So, if J: X — X** is the canonical embedding and fe X, we put J (f) = (f, /2)»
where f; = m,(f) = £, and 7, (f) = f; satisfies f2(v) = v(f) = [mofdv, for every
v e Mg (I*,0). Note that the space (%, (I*,0), || |.) of bounded Borel functions
h: I* — R vanishing on @, with the | - || .-norm, may be considered isometric and
isomorphically embedded into 7, (X**) = Mg(I* O)*. Actually, if fe X, then
ﬂz(f) =f,= fe ‘%017(1*5(9)-

(A) The mapping ¢ : /., (I) > X** such that ¢ (f) = (£,0), VS €/, (1), is an
isometric isomorphism between £, (I) and 7, (X**), and also an isomorphism for
the o (/. (I), ¢ (I))-topology of ¢, (I) and the w*-topology of m;(X**). Thus
¢ (D) = {(d,0):d e D} = B(X**) is a w*-compact subset of B(X**) homeomor-
phic with €. Let

= {(£,0)e B(X**):0 < f < d for some d € D}.
Clearly K is a w*-compact subset of B(/,(I)) = B(X**) such that ¢ (D) < K,

and K N J ( X)' =K.
Claim 1. dist(K,J (X)) = 3

Indeed, let (fO)eK Then ||(fO) — NN = IIG6f, =3f)I <3 Therefore
dist(K,J (X)) < 3. On the other hand, given 1€, let Y (t) =:d. e D. Clearly
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supp (d) {iel:d.(i) = 1} =: A, is an infinite subset. We claim that dist((d., 0),
J(X)) = 3. Indeed, 0therw1se there would ex1st h € X such that ||(d,,0) — J (h)| =
= ||(d,,0) (hR)|| < 3. Thus |d, — h|| <3 in Z,(I), and this implies 3 < h on
A,. Hence h >3 on A ’. Since A, is infinite, § # A\I < I* and every
pe AP\I satisfies /i(p) > 3. Let 8, be the Dirac probability with mass 1 on p for
some p € A\I. Observe that d,€ M & (I*, 0) because © N A" = §. Then

(d0) = (R B) (@) = 10 = h(3,)l = = h(p) = 3,
whence [|(d.,0) — J (h)|| = 3, a contradiction. Thus dist(K,J (X)) > 3.

Claim 2. dist(co"" (K),J (X)) = 1.

Indeed, first dist (6" (K), J (X)) < 1 because c6"" (K) = B(X**). On the other
hand, let v := ¢ (1) be the probability on ¢ (D) = K image of x under the continu-
ous linear mapping ¢. Then the barycenter r(v) of v belongs to ¢6"" (K) and satisfies
r(v) = (20,0), where z, = r(u) e B(Z,(I)). We claim that dist((z,0),J (X)) > 1.
Indeed, given h e X, we have ﬁ[ (0 = 0. On the other hand, Z,} @ = 1. Thus for
¢ > 0 there exists an open neighborhood V of @ in I such that

VoeV, h(v) S% and % (v) > 1 — g
In particular, Voe VI, h(v) < 5 and zy(v) > 1 — 5, whence we get [zy — h| >
> 1 — ¢, thatis, [|(z0,0) — (h k)| > 1 because ¢ > 0 is arbitrary, and this proves
that dist ((z,0), J (X)) > 1.

(B) Let g:= 1;np € B, (I*,0) and let ®:7,(I) > X** be such that ®(f) =
= (f, +39), ¥fe £, (I). @ is an injective affine mapping from 7, (I) into X**.
Moreover, @ is a continuous mapping for the o (/. (I),Z, (I))-topology of 7., (I) and
the w*-topology of X** Thus ®(D) = {(djg):deD}=:H < B(X**) is
a w*-compact subset of B(X**) homeomorphic to %.

Claim 3. dist (H J(X)) =3

Indeed, let (d, +3g)eH Then clearly [(d, +3g) — 37 (d)ll = (4. +39 — M) <3
Thus dist(H,J (X)) < 5. On the other hand, glven T€®, let Y (1) =:d. €D and
supp(d,) = {iel:d, (l) 1} =:A,, which is an infinite subset. We claim that
dlSt((dT, +3g) J (X)) > 1. Indeed, otherwise there would exist fe€ X such that
(e, +39) = (NI = I(d: = f; +39 = f)I <3 Thus ||, — fI| <3in 7, (I), and
this implies < f on A, whence f >3 on A/. Since A, is infinite,
0 # A\I = I* and every pe A,”\I satisfies f(p) > 3. Let &, be the Dirac
probability with mass 1 on some p e A.”\I. Observe that 6, Mg(I*, ) since
O AP = @ and so 5,(39) = 3. Thus

I(de + 39) = (LN G = 1Gg = NG =1 (p) — 3 = 3.

whence ||(d,39) — J(f)I =3 and this contradicts our hypothesis. So
dist(H,J (X)) = 3.
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Claim 4. dist (65" (H),J (X)) = 1.

Indeed, first dist(co"" (H),J (X)) < 1 because T0"* (H) = B(X**). On the other
hand, let ¢:= ®(u) be the probability on ®(D) = H image of u under the
continuous affine mapping ®. As in Case (A) we have r(0) = (2o, +39). We claim
that dist ((zo, +39), J (X)) > 1. Indeed, given f e X, we have /] @ = 0 and %] 0 =
= + 1. Thus given ¢ > 0 there exists an open neighborhood V of ¢ in BI such that

VeV, f(v) Sg and Z(v) > 1 — %

In particular, Yoe VNI, f(v)<3 and z(v) > 1 —35 whence we get
lzo — fll = 1 — ¢ that is, |z — f|| = 1 because & > O is arbitrary. Thus
I(z0, +39) — (£, Al = 1, and this proves that dist ((zo, +39), J (X)) = 1. O

4. Control of convex subsets in the dual X*

Let X be a Banach space, C a convex subset of X* and Wa w*-compact subset
of X*. We study in this Section the problem of the control of the distance
dist (c6"* (W),C) by the distance dist (W, C). First, we have the following result of
Haydon.

Proposition 4.1. [20] Let X be a Banach space. The following statements are
equivalent:

(1) X fails to have a copy of .

(2) For every w*-compact subset K < X* we have

" (K) = 0 (K) = 50 (Ext (K)).

(3) Every convex subset C = X* has I-control inside X*.

(4) Every convex subset C = X* has control inside X*.

An elementary result is the following proposition.

Proposition 4.2. Let C be a w*-closed convex subset of the dual Banach space
X*. Then for every subset W of X* we have dist(co"" (W), C) = dist (W, C).

Proof. Clearly, the statement holds true when dist(W,C) = + co. Assume that
dist(W,C) = a < + oo. Since C is w*-closed, this implies that W = C + aB(X*).
As C + aB(X*)is convex and w*-closed, we get ¢6"" (W) = C + aB(X*), which
implies dist (" (W), C) < a and completes the proof. O

Now we prove the following proposition, that supplies a useful criterion for the
3-control.

Proposition 4.3. Let X be a Banach space.
(1) If C is a convex subset of X* that fails to have a w*-N-family (in particular,
if C fails to have a copy of the basis of ¢/(c)), then C has 3-control inside X*, that

19



is, for every w*-compact subset K of X* we have dist(c0"" (K),(C) < 3dist(K, C).

(2) If K is a w*-compact subset of X* such that K fails to have a w*-N-family
{in particular, if K fails to have a copy of the basis of ¢, (o:)), then co"" (K) =
= w(K).

In order to prove Proposition 4.3 we need to define the notion of w*-N-farnily
(see [17, Definition 3.3], [19, Definition 2.1]) and prove the Lemma 4.5.

Definition 4.4. Let X be a Banach space. A subset & of X* is said to be
a w¥*-N-family of width d > 0 if # is bounded and has the form

F = {un: M, N disjoint subsets of N},

and there exist two sequences {r,:m > 1} = R and {x,:m > 1} < B(X) such
that for every pair of disjoint subsets M, N of N we have

Nun (Xn) = 1 + d, Yme M, and nyn(x,) < r, VneN.
Moreover, if r,, = 1o, Ym > 1, we say that F is a uniform w*-N-family in X*.

Remarks. (1) If Z is a set, a family (A,-, B,-)ie, of pairs of nonempty subsets of
Z is said to be an independent family if A; n B; = 0, Vie I, and for every finite
nonempty subset F = I we have ()ipe,4; # 0, where ¢, = +1, (+1) 4, = 4, and
(—1)A; = B,. In N there exists an independent family (M, N;),.. with cardinal .
Indeed, since BN is a Hausdorf compact space extremally disconnected with
weight w(BN) = ¢ (see [30, p. 76]), by the Balcar-Fran¢k Theorem (see
[2], [9,p.120]) there exists a continuous onto mapping f:fN — {0,1}‘. Let
7 {0,1) > {0,1}, i < ¢, be the projection onto the i-factor {0,1} and put
M;:=(m0f)'(1)n N and N;:= (m, 0 f)"'(0) n N. Clearly, {(M,N):i < ¢}
is an independent family in N.

(2) If (M;, N}). is an independent family in N with cardinal ¢ and # = {fy:
: M, N disjoint subsets of N} is a w*-N-family in the dual Banach space X*
associated with the sequence {x,,:m > 1} < B(X), then a standard argument (see
[8, p. 206]) proves that the family {1y, y,: i < c}is equivalent to the basis of Z, (c).
Moreover, the same argument yields that the sequence {x,:n > 1} < B(X)
associated to & is equivalent to the basis of /. So, if a subset # of a dual Banach
space X* is a w*-N-family, then X has an isomorphic copy of 7, and some subset
of Z is equivalent to the canonical basis of 7(¢c). And vice versa, if X has
a copy of /,, it is easy to see that X * contains a w*-N-family associated with the
basis of ¢ (c).

Lemma 4.5. Let X be a Banach space and K a w*-compact subset of X* such
that dist(c0""(K),c0(K)) > d > 0. Then there exist ro€ R, z,ec0”" (K) and
Y € S(X**) with W (z0) > ro + d and (k) < ro, Vke K, and such that, if p is
a Radon probability on K with barycenter r(u) = zo and H = supp(u) is the
support of 1, then: (i) for every w*-open subset V < X* with V.~ H # (, there
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exist £€¢0” (Vn H) such that (&) > ro + d; (ii) there exist a sequence
{x,:n > 1} = B(X) and, for every pair of disjoint subsets M, N of N, a point
Ny € H such that

Ny (Xm) = 1o + d, Yme M, and nyy(X,) < 1o, VREN.

Proof. Find & > 0 such that dist(¢6"" (K),c0 (K)) > d + ¢ > 0 = dist(K,c0(K)). By
Lemma 2.3 there exist zoe€c0” (K) and ¥ € S(X**) such that inf ¥ (zo —
— Co(K)) > d + ¢, that is

Y (20) > sup Y (C0(K) +d + e >supy(K)+¢+d.

So, if ry:= sup  (K) + &, then Y (zo) > ro + d and Y (k) < ro, Vk € K. Let p be
a Radon Borel probability on K with barycenter r(u) = z, and let H := supp (u)
be the support of u.

Claim. For every w*-open subset V of X* with Vn H # () there exist
¢eco” (Vn H) and neco(Vn H) = ©"(V n H) such that §(£) > r, + d and
lﬁ(l’]) < Tp.

Indeed, by Lemma 2.3 there exists ¢ €c0"” (V' n H) such that inf ¢ (¢ — €6(K)) >
d + ¢, that is, (&) > ry + d. On the other hand, as (k) < ro, Vk € K, then
¥(n) < ro for every neco(Vn H). Thus, by the Claim and the proof of [20,
2. Lemma] we can find a sequence {x,:n > 1} < S(X) such that, if we define

A, ={¢eH:¢(x,)>ry+d} and B, = {neH:n(x,) < ro}, ¥n > 1,

then, for every pair of disjoint finite subsets M, N of N, the w*-open subset

V(M,N):= ((\memAm) O ([ \nenBy) of H is nonempty. So for every pair of disjoint
finite subsets M, N of N

0 # V(MN) = () T)n (NB) = H.

meM neN

Since H is a w*-compact subset, we conclude that for every pair of disjoint (finite
or infinite) subsets M, N of N then

0#(()4.")n((\B,") = H.

meM neN

Since 4," < {¢eH:¢(x,) =1y +d} and B, < {ne H:n(x,) < ry}, finally
we deduce that for every pair of disjoint (finite or infinite) subsets M, N of N there
exists # v € H such that

Mvn (Xm) = 1o + d, Yme M, and nyy(x,) < ro, VnEN. O

Proof of Proposition 4.3. (1) Suppose that C fails to have 3-control inside X*.
Then there exist a w*-compact subset K of X* and two real numbers a,b > 0 such
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that dist (€6"" (K),C) > b > 3a > 3dist(K, C). So, as dist(co(K, C) = dist(K, C) < a,
then dist (c0"" (K),c0(K)) > b — a > 0. By Lemma 4.5 there exist a real number
ro€ R, a sequence {x,:n > 1} = B(X) and, for every pair of disjoint subsets M,
N of N, a vector #,,y € K such that

Mun(Xm) = 1o + b —a, Vme M, and nyy(x,) < ro, VnEN.

As dist(K, C) < a, for each pair of disjoint subsets M, N of N there is zyy € C
so that ||zyn — Nmnll < a. Thus, the family {zM,N : M, N disjoint subsets of N} is
bounded and satisfies

Zun(Xm) = 1o + b — 2a, Vme M, and zyn(x,) < 1o + a, VneN.

Since ro+b —2a=ry+a+ (b—3a)>ry+ a, then the set {zyy:M,N
disjoint subsets of N} is a w*-N-family in C, a contradiction.

(2) Otherwise, there exists d > O such that dist(c6"" (K),c0(K)) > d > 0. By
Lemma 4.5 there exist a sequence {x,:n > 1} = B(X), a real number r, € R and,
for every pair of disjoint subsets M, N of N, a vector #,,y € K such that

My (Xm) = 1o + d, Yme M, and 5y n(x,) < ro, VneN.
Thus there exists in K a w*-N-family, a contradiction. O
The following result is due to M. Talagrand [29, Theorem 4].

Proposition 4.6. Letr X be a Banach space and A a subset of X. If T is
a cardinal with cofinality ¢f (t) > N,, we have that A contains a copy of the basis
of ¢,(x) if and only if [ A] has a copy of ¢, (7).

This result of Talagrand allows us to prove the following corollaries.

Corollary 4.7. Let X be a Banach space and A a subset of X* that fails to have
a copy of the basis of ¢, (c). Then: =

(1) For every w*-compact subset K < [ A] we have T6"" (K) = ¢o(K).

(2) Every convex subset C = [A] has 3-control inside X*.

Proof. First, observe that [_Aj fails to have a copy of the basis of ¢, (c) by the
above result of Talagrand and by the fact that cf(c) > N,. Now it is enough to
apply Proposition 4.3. O

Corollary 4.8. Let X be a Banach space and let W be a subset of X* which is
either weakly Lindelof or is closed, convex and has the property (C) of Corson.
Then -

(i) Every convex subset C of [W] has 3-control inside X*, and

(ii) For every w*-compact subset K of [W] we have t6"" (K) = ¢o(K).

Proof. In both cases W cannot have a copy of the basis of /,(c) and so (i) and
(ii) follow from Corollary 4.7. O
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Now we consider the control of convex subsets C = X* suchthat C < Y < X*
and Y is a closed subspace of X* with w*-angelic closed dual unit ball. If Y is
a Banach space, the closed dual unit ball B(Y*) is said to be w*-angelic if given
a subset 4 of B(Y*) and a € A", there exists a sequence {4,:n'> 1} = A such
that a, 2> a. A subset B of a w*-compact subset K of X* is said to be
a boundary if every x € X attains on B its maximum on K; and B = K is said to
be a strong boundary if B is a boundary and ¢6"* (K) = To(B).

Proposition 4.9. Let X be a Banach space and Y a closed subspace of X* with
w*-angelic closed dual unit ball (B(Y*),w*). If C is a convex subset of Y, then
dist (0" (K), C) = dist(B, C) for every w*-compact subset K of X* and every
boundary B = K. Moreover, T0"" (K) = T6(B) for every w*-compact subset K of
X* such that Y contains some boundary B of K.

Proof. Let C be a convex subset of Y and suppose that there exist a w*-compact
subset K of X*, a boundary B < K and two real numbers 0 < a,b < 1 such that

dist(€"" (K),C) > b > a > dist(B, C) = dist(c5(B), C).

Let wyeco" (K) and ¢ > 0 be such that dist(w,, C) > b + & By Lemma 2.1
there exists @y € S(X**) such that inf@o(wo — C) > b + ¢, that is, @o(wo) >
> sup ¢(C) + b + ¢. Denote

U:= {pe B(X**): {p,w) = {@o,wop — &} and
Vi={xe B(X): W, x) = {pnp,Wo) — ¢).
Observe that ¢y e U and also U = Vi Y > )*( * is the canonical inclusion,
then i* : X** — Y* satisfies i* (¢,) € i*(U) = i*(V)" < B(Y*). Since (B(Y*), w*)
is angelic, there exists a sequence {x,:n > 1} = V such that i*(x,) > i*(¢po)
in the w*-topology o (Y*, Y). Thus, for every y € Y we have y(x,) = i*(x,)(y) -
= * (@) (¥) = @o(y)-
Claim. For every € B,
lim sup x,(8) < sup @o(C) + a < @o(wo) — & + (a — b).

Indeed, as dist(B, C) < a, there exists y € C < Y such that | — y| < a. Thus
lim sup x,,(B) = lim sup [x.(y) + x,(8 — y] =

n—co n—o0

= @o(y) + lim sup x, (B — y) < sup ¢y(C) + a.

n—oo

Finally, as b + & + sup @o(C) < @o(wo), we get sup ¢o(C) + a < @o(wy) —
— ¢+ (a — b).
By Simons inequality [28, 2. Lemma] we have:

sﬁup [lim sup x,(B)] = inf [ sup g(k): g€ co((x,)u=1)]-

ket (K)
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Thus there exists g € co((x,),) = V such that

k — — b).
L 9(k) < @o(wo) — & + (a — b)

On the other hand, as g€ V' and w,€¢0""(K), we have ¢q(wo) — & < Supys(x)9 (k).
whence we get ¢o(wo) — & < @o(wo) — & + (a — b), a contradiction because
0<b-—-a.

Finally, suppose that Y contains some boundary B of a w*-compact subset K of
X*.Let C:=To(B) < Y. By the above results dist (¢0""(K), C) = dist(B,C) = 0.
Thus 6" (K) = ¢o(B) = <o (K). O

5. Universally Krein-Smulian Banach spaces

In this Section we deal with the class & of Banach spaces that fail to have
a copy of #;(c). Let us introduce our terminology. If Y is a Banach space we adopt
the following definitions:

(1) Let Z be a subspace of Y* and let ¢(Y,Z) denote the topology of Y of
pointwise convergence on Z. Then (Y,0 (Y, Z)) is said to satisfy the Krein-Smulian
Theorem if and only if c0"*)(K) is o(Y,Z)-compact whenever K is
a norm-bounded o (Y, Z)-compact subset of Y. If, moreover, c0”"?(K) = o (K),
then (Y,0 (Y, Z)) is said to satisfy the strong Krein-Smulian Theorem.

(2) Y is said to be universally Krein-Smulian if (Y,o(Y,Z)) satisfies the
Krein-Smulian Theorem for every norming subspace Z of Y*. If (Yo(Y,2))
satisfies the strong Krein-Smulian Theorem for every norming subspace Z of Y*,
then Yis said to be strongly universally Krein-Smulian.

The following elementary proposition gives some equivalences for the just
defined notions.

Proposition 5.1. If Y is a Banach space, then:

(a) Yis universally Krein-Smulian if and only if, for every Banach space X and
every subspace Z of X* isomorphic to Y, the space (Z,w*) satisfies the
Krein-Smulian Theorem.

(b) Y is strongly universally Krein-Smulian if and only if, for every Banach
space X and every subspace Z of X* isomorphic to Y, the space (Z, w*) satisfies
the strong Krein-Smulian Theorem.

Proof. (a) Assume that Y is universally Krein-Smulian. Let X be a Banach
space, i: Y — X* be an isomorphic embedding and i(Y) =:Z < X* be the
isomorphic copy of Y into X*. So, i*(X) = Y* is a subspace of Y* norming on
Y such that (Z, w*) and (Y, (Y,i*(X))) are isomorphic. Thus (Z, w*) satisfies the
Krein-Smulian Theorem because (Y, a(Y,i* (X)) does.
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To prove the converse implication, let ¥ be a subspace of Y* norming on Y.
Then there exists an isomorphic embedding i : Y — V* so that (i(Y), o (V*,V)) and
(Y,o(Y,V)) are isomorphic. By hypothesis (i(_l_/),a(V*,é)) satisfies the
Krein-Smulian Theorem. Since the topologies o(V*,V) and ¢ (V*, V) coincide on
bounded subsets of V*, we conclude that (Y, 5 (Y, V)) satisfies the Krein-Smulian
Theorem.

(b) This proof is analogous to the one of (a). |

(3) A subspace Z of a dual Banach space X* is said to have M-control inside
X*, for some constant 1 < M < oo, if dist(c6"" (K), Z) < M dist(K, Z) for every
w*-compact subset K of X*. A subspace Z of X* is said to have control inside
X* if Z has M-control inside X*, for some 1 < M < oo. Clearly, if a closed
subspace Z of X* has control inside X*, then (Z, w*) satisfies the Krein-Smulian
Theorem.

(4) Yis said to have universal M-control, for some constant 1 < M < oo, if
for every Banach space X and every subspace Z of X* isomorphic to Y, Z has
M-control inside X*. Y is said to have universal control if for every Banach space
X and every subspace Z of X* isomorphic to Y, Z has control inside X*.

In this Section we show that the class of universally Krein-Smulian Banach spaces,
the class of strongly universally Krein-Smulian Banach spaces, the class of Banach
spaces that have universal control and the class of Banach spaces that have
universal 3-control coincide with the class & of Banach spaces that do not contain
a copy of 7, (c). The class # is very large. It contains, for instance, the class of
Banach spaces X with w*-angelic closed dual unit ball B (X *), the class of Banach
spaces with the property (C) of Corson, etc. This class % has been studied by many
authors: by Talagrand, by Cascales, Manjabacas, Vera and Shvydkoy, etc. In [5],
[6] it is proved that, if a Banach space Y belongs to the class %, then Y is strongly
universally Krein-Smulian.

We start with the connection between the class % and the properties universal
3-control and strongly universally Krein-Smulian.

Proposition 5.2. If Y is a Banach space that fails to have a copy of ¢;(c), then
Y has universal 3-control and is strongly universally Krein-Smulian.

Proof. This follows from Proposition 4.3. O

For the particular class of Banach spaces Y with w*-angelic closed dual unit ball
B(Y*), we obtain the following stronger result.

Proposition 5.3. If Y is a Banach space with w*-angelic closed dual unit ball
B(Y*), then Y has universal I-control and is strongly universally Krein-Smulian.

Proof. Y has universal 3-control and is strongly universally Krein-Smulian by
Proposition 5.2, because a Banach space Y fails to have a copy of ¢ 1(c) when-
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ever (B(Y*),w*) is angelic. Moreover, Y has universal 1-control by Proposition
4.9, O

The following result is a converse of Proposition 5.2.

Proposition 5.4. If X is a universally Krein-Smulian Banach space, then
X does not contain a copy of ¢, (¢).

In order to prove this result we need the following elementary lemma.
Lemma 5.5. £,(c) is not universally Krein-Smulian.

Proof. Consider the Banach space C([0,1]) whose dual C([0,1])* is the Banach
space Mg ([0, 1]) of Borel Radon measures on the compact space [0,1]. It is well
known that there exists in (B(Mg([0,1])), w*) a canonical homeomorphic copy
K of the compact space [0, 1]. In fact, K = {4, : ¢ € [0, 1]), where , is the measure
on [0,1] such that 6,(f) = f(t) for all feC([0,1]). Let ¢:¢,([0,1]) —
— Mg([0,1]) be the natural isometry given by ¢ ((A)efo.17) = D ef0.14:: for every
(A)ero € 1 ([0, 1]). Observe that Z := ¢ (¢,([0,1])) is actually the subspace of
purely atomic measures on [0,1]. Clearly, K < B(Z) and ¢6""(K) is the subset
2,([0,1]) of Mg([0,1]) consisting of the Borel Radon probabilities on [0,1],
which satisfies 2, ([0, 1])\Z # 0. So, ¢, (c) is not universally Krein-Smulian. []

Proof of Proposition 5.4. We suppose that X is a Banach space containing
a subspace Y isomorphic to Z, ([0, 1]) and we shall prove that X is not universally
Krein-Smulian. Let T:7,([0,1]) > X be an isomorphism into X such that
T(/,([0,1]) = Y. The space C([0,1]), considered as a subspace of
/([0,1]) = £, ([0,1])* (that is, C([0,1]) = {fe€/.([0,1]):f continuous on
[0,1]}), is 1-norming on ¢,([0,1]). Let E, be the subspace of X* defined by
E,:= T*'(C([0,1])). It is easy to see that E; is Ay-norming on Y, for some
0 < Jo < 1 depending on T (in fact, 2o = || T7'||7" - |IT|~" holds). Moreover, if
1 is the a(¢,([0,1]), C([0,1]))-topology of ¢,([0,1]), then T:(¢,([0,1]),7) -
— (Y,0(Y, E,)) is an isomorphism.

LetE, = V' = {ze X*:2z()) =0,Vye Y} < X*and E = E, + E,.

Claim 1. E is %"-norming on X.

Indeed, pick u € S(X). .
(a) Suppose that dist (1, Y) < % and let y, € Y be such that |u — y,| < 3. Then
lyol > 1 — % > 2 Since E, is A-norming on Y, we can find an element e, € S (E,)

such that e, (yo) > 3 A, Whence we get e, (u) > 3 .
(b) Suppose that dist (u, Y) > %. Then
sup {e(u): e e B(E)} > sup {e(u): e€ B(E,)} =
Ao

= sup {z(u):ze B(Y")} = dist(u, ¥) > 3
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Therefore, E is —normmg on X.
Claim 2. Y is o (X, E)-closed in (X,0 (X, E)) and o(X,E) | Y = o (Y E,).

Indeed, Y is o(X,E)-closed in (X,0(X,E)) because Y= (").x, Ker(e) and

o(X,E) | Y= 0(Y,E,) because E = E; + E, and E, = Y*.

By Lemma 5.5 there exists a subset K = B(¢;([0,1])) such that K is t-compact
but o (K) is not t-compact in (¢,([0,1]),7). Let H:= T(K) < Y. By Claim 2,
H is a norm-bounded o (X, E)-compact subset of Y. Moreover, by Claim 2,
co’®B (H) = co*¥)(H) = Y and, so, co”™*?) (H) is not o (X, E)-compact because
it is homeomorphic to €0* (K), which is not t-compact. Thus X is not universally
Krein-Smulian. OJ

Combining all the above results we obtain the following proposition.

Proposition 5.6. For a Banach space Y the following statements are equival-
ent:

(0) Y is universally Krein-Smulian.

(0') If X is a Banach space and Z a subspace of X* isomorphic to Y, (Z,w¥)
satisfies the Krein-Smulian Theorem.

(1) Y is strongly universally Krein-Smulian.

(I') If X is a Banach space and Z a subspace of X* isomorphic to Y, (Z, w¥)
satisfies the strong Krein-Smulian Theorem.

(2) Y has universal 3-control, that is, for every Banach space X and every
subspace Z of X* isomorphic to Y we have dist(c6"" (K), Z) < 3dist(K, Z) for
every w*-compact subset K of X*.

(3) Y has universal control, that is, if X is any Banach space and Z is
a subspace of X* isomorphic to Y, there exists a constant 1 < M < oo such that
dist (€0 (K), Z) < M dist(K, Z) for every w*-compact subset K of X*.

(4) Y fails to have a copy of ¢, (c).

Proof. By Proposition 5.1 we have (0) < (0') and (1) < (1). Clearly, (1) = (0)
and (2) = (3) = (0"). From Proposition 5.2 we get (4)= (1) + (2). Finally,
(0) = (4) by Proposition 5.4.

6. Convex w*-closures vs convex |-|-closures

A subset Y of a dual Banach space X* is said to have the property (P) if
€0""(H) = To(H) for every w*-compact subset H of ¥, that is, every w*-compact
subset H < Y is a strong boundary. The purpose of this section is to give an inner
characterization of the property (P) for subsets of the dual Banach space X*.

Haydon [20] characterized the property (P) for a whole dual Banach space X*
as follows: X* has the property (P) if and only if X fails to have a copy of ¢, if
and only if every z € X** is universally measurable on (X*, w*).
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The fragmentability is a useful notion related with the property (P). Namioka
proved that a subset Y < X* has the property (P) whenever (Y,w*) is
norm-fragmented ([24, 2.3. Theorem]). So, norm-fragmentability implies the
property (P). The converse is not true. Indeed, let X be the James Tree space
JT (see [21]), which is a non-Asplund separable Banach space without
a copy of /. So, JT* has the property (P) by a result of Haydon [20], but the
closed unit ball B(JT*) of JT* is not norm-fragmentable, because the
norm-fragmentability of B(X*) is equivalent to the asplundness of X (see [24, 1.3.
Theorem]).

Let (X, T) be a Hausdorff topological space, Y a subset of X and u a finite
positive Borel Radon measure on X.

e %,(X) will denote the o-algebra of Borel subsets of X.

e The positive Radon measure u is carried by Y if there exist a sequence of

compact subsets {K,:n > 1} of Y such that K, = K,,; and u(K,) T u(X).

e Y is said to be a universally measurable subset of X if Y is y-measurable for
every finite positive Borel Radon measure u on X.

e A mapping f: X — R is said to be u-measurable if f~'(G) is p-measurable
for all open subset G of R.

e If (Z,T) is another topological space, a mapping f:X — Z is said to be
Lusin p-measurable if for each ¢ > 0O there exists a compact subset K of
X such that u(X\K) < ¢ and f| K is continuous. Recall that by Lusin’s
Theorem a mapping f:X — R is p-measurable if and only f is Lusin
u-measurable.

e A mapping f: X — Z is said to be universally measurable on Y if and only

if f is Lusin p-measurable for every positive finite Radon Borel measure
u carried by Y, which is equivalent to say that, for every w*-compact subset
K < Y and for every Radon Borel probability 1 on K, f is Lusin y-measur-
able.

In the following Proposition 6.3 we characterize the property (P) for an arbitrary
subset Y of a dual Banach space X* by means of w*-N-families (see Definition
4.4) and Cantor skeletons. Let us give the definition of a Cantor skeleton.

Definition 6.1. A subset o/ of a dual Banach space X* is said to be a Cantor
skeleton of width 6 > 0 if o/ is a bounded set of the form </ = {k,: o€ %} and
there exist sequences {a,:n > 1} = R and {x,:m > 1} = B(X) such that, for
each ¢ € {0,1}" and for every m > 1, we have <{k,x,> < a,, if 6(m) =0, and
Ckyy Xy = ay + 6, if 6(m) = 1. Moreover, if a, = a, Vn > 1, we say that o/ is
a uniform Cantor skeleton. A w*-compact subset K of X* is said to be endowed
with a Cantor skeleton A" if A is a Cantor skeleton and A™" = K.

Remark 6.2. (0) w*-N-families and Cantor skeletons are almost the same thing.
Actually, if Z is a w*-N-family, there exists a subset #" of % which is a Cantor
skeleton. And vice versa, if 4 is a Cantor skeleton, there exists a subset & of
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A which is a w*-N-family. Indeed, suppose that & := {ny disjoint subsets of
N} is a w-N-family in X* such that
My (Xm) = 1 + 0, Yme M, and nyn(x,) < 1, V,€N.

For each g€ {0,1}", let M:= {neN:¢(n) =1} and N:= N\M, and define
h,:= fy. Then, it is easy to see that # := {h,:0 € {0,1}"} is a Cantor skeleton
of width ¢ in X*. Of course, J is uniform if & is uniform. The converse is also
true: if {h,: o€ {0,1}"} is a Cantor skeleton of width 6 > 0 associated with the
sequences {r,:m > 1} = R and {x,:m > 1} = B(X) for each pair of disjoint
subset M, N of N choose gy € € such that 6,y (m) = 1, Vme M and o)y = 0,
Vn e N. So, if for each pair of disjoint subset M, N of N we define 1,y = k
then {nyy: M, N disjoint subsets of N} is a w*-N-family in X*.

(1) Let K be a w*-compact subset endowed with a Cantor skeleton
o = {k,:0 €%} of width 6 > 0 associated with the sequences {r,:m > 1} = R
and {x,:m > 1} = B(X). Then we have:

(11) For every k € K and every m > 1 either <{k,x,,» < a,, or <k,x,,» > a,, + 9.
Moreover, if we define the mapping ®: K — % = {0,1}" as

1, if kx> a, + 6,
0, if <k9xm> < Qs

we have that @ is a continuous mapping that satisfies ® (K) = 4.

(12) In general, K may not be homeomorphic to %, even K may not contain
a subspace homeomorphic to %. Indeed, pick the compact space SN considered
homeomorphically embedded into (B(C(BN)*),w*). It is clear that To(BN) &
< ©0""(BN) because €0 (BN) is the set of purely atomic probabilities on SN and
co” (B N) is the set of all Radon probabilities on SN. This fact implies (by the
next Proposition 6.3) that there exists a w*-compact subset K of SN endowed
with a uniform Cantor skeleton with respect to C(BN)*. However, K cannot
contain a homeomorphic copy of % because SN fails to contain non-trivial
convergent sequences.

(13) For every 0 < n < ¢ there exist an infinite subset N, < N, a real number
b,, and a subset .«/, < ./ such that .o/, is a uniform Cantor skeleton of width
n associated to the number b, and the sequence {x,:me N,} = B(X). Indeed,
since the family {a,:n > 1} = R is bounded, there exists b,€ R such that
N,:= {meN:b, + n — 6 < a, < b,} is infinite. Let 7: {0,1}® — {0,1}" be the
canonical projection and for each te {0,1}" choose o(t)en~'(r). Define
h, 1= ki for each t € {0,1}¥. Then it is easy to see that .o/, := {h : 7€ {0,1}™]}
is a uniform skeleton of width n > 0 associated with b, e R and the sequence
{x,:meN,} = B(X).

OM,N*

Vke K, ¥m > 1, ®(k)(m) = |

Proposition 6.3. Let X be a Banach space and Y a subset of X*. The following
Statements are equivalent:
(1) Y does not have the property (P).
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(2) There exist a w*-compact subset H of Y and two real numbers a < b such
that for every finite family F of w*-open subsets of X* with VA H # 0,VVe Z,
there exists x5 € B(X) fulfilling that

inf (VnH,xgpy) <a<b<sup<VnHxzy, VWWeZF.

(3) There exists a w*-compact subset K of Y endowed with a uniform Cantor
skeleton.

(4) There exists a functional \y € X** which is not universally measurable on Y.

(5) There exists a w*-compact subset H of Y which is uniformly non fragment-
able, that is, there exists 6 > 0 such that for every finite family F of w*-open
subsets of X* with V. H # 0, VYV e Z, there exist x5 € B(X) and r5 € R such
that

inff (VN H,xg) <tz <tz + 6 <supVnH,xzy, VWeF.
(6) There exists a w*-compact subset H of Y that contains a w*-N-family.

Proof. (1) = (2). Since Y does not have the property (P), there exists
a w¥-compact subset K < Y such that dist(co"" (K), co(K)) >d +¢>0 =
= dist(K, 0 (K)) for some d,¢ > 0. By Lemma 2.3 there exist z, e ¢0" (K) and
Y € S(X**) such that inf  (z — CO(K)) > d + &. Thus

Y (zo) > sup Y (CO(K)) + d + e =supy(K) + ¢ +d.

Moreover, there exists a nonempty w*-compact subset H < K such that for
every w*-open subset V of X* with V' n H # () there exists ¢ e€co" (V n H)
with inf y (¢ — T6(K)) > d + & Thus (&) > sup ¢ (K) + d + &. So, if we put
ro:=sup Y (K) + & then (&) > ry + d and ¥ (k) < ro, Yk € K. Therefore, if
Z is a finite family of w*-open subsets of X* such that V n H # 0, VV e &, there
exist kye V' n H and &,€T6" (V n H) so that ¥ (ky) < roand Y (&) > ro + d for
every Ve Z. Thus, as B(X) is w*-dense in B(X**), we can find a vector
x# € B(X) such that

inf <V H,xz) <ry<ry+d<sup(c0” (VnH),xz), VWeZF.

Since xz € X, then sup (C6"" (V n H), x5) = sup (V' H,x5)» and so (2) holds
witha:=ryand b:=ry + d.

(2) = (3). Let H be a w*-compact subset of Y fulfilling (2). First, we construct
an independent sequence {(4,,B,):m > 1} of subsets of H.

Step 1. By (2) there exists x; € B(X) such that
inf (H,x) < a <b <sup (H,x).

Define V;; = {he X*:{(h,x,> < a} and V;, = {he X*:{hx;) > b}. Observe
that Vi, n H # 0, i = 1,2.
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Step 2. By (2) there exists x, € B(X) such that
inff (Vi Hyxy) <a<b<suplV;nH,x,, i=1,2

Let V3 = {he X*:{(h,x,> < a} and V5, = {he X*: (h,x,) > b}. Observe that
Vi Vyn H#0,ij=1,2.

Further, we proceed by iteration. We obtain a sequence {V¥,;,V,»:n > 1} of
w*-open subsets of X* such that V;;, n... n ¥V, n H # 0, ije {1,2},n > 1. Thus,
if we define

A, = {heH:{(hx,» > b} and B, = {heH:<{(hx,) <a},m>1,

then it is easy to verify that {(4,,B,):m > 1} is an independent sequence of
w*-closed subsets of H. Now, for each o € {0,1}" and each ne N, let C,,) = 4,,
if o(n)=1, and C,, = B,, if o(n) =0. By compactness, it is clear that
(Vi21Clm # 0, Vo € {0,1}". So, we can choose h, € (),51C, Vo € {0,1}V. Let
K:= {h:0€e{0,1]N} . It is easy to see that {h,: ¢ € {0,1}"} is a uniform Cantor
skeleton of K of width b — a.

(3) = (4). Let K be a w*-compact subset of Y endowed with a uniform Cantor
skeleton {#, : o € {0,1}"} of width & > 0 associated with the number r, € R and the
sequence {X,:m > 1} < B(X). So, K = {h,:0€ {0,1]N} . Let T:/, - X be the
continuous operator such that T(e,,) =X, Vn>1, {en ‘n > 1} being the canonical
basis of /. So, its adjoint T* : X* — /, fulfills T* (x*) = (x* (x,))n, Vx* € X*.
Define the mapping ®: ¢, — /,, as follows

V(@) el @((@)) = ~((a, — ) v 0) A 9).

The mapping ® is w*-w*-continuous and satisfies ® O T*(K) = {0,1}" = &. Let
A be the Haar probability on ¥ and p a Radon probability on K such that
® O T*(u) = 4, that is, A is the image of y under the w*-w*-continuous mapping
® O T*. By a well known Sierpinski’s argument ([27], [26, 14.5.1]), for every
pe BN\N the point mass 6,€ S(¢*) is not A-measurable. By [25, Theorem 9,
p. 35] the mapping 6,0 ® O T*: K — R is not p-measurable on K, which
actually means that {x*e€ K : §, O ® O T*(x*) > 1} is not y-measurable (because
for every ¢ € € either d,(c) = 1 or 6,(c) = 0). As

{(x*€¢ K:3,0® O T*(x*) > 1} = {x*e K:0, 0 T*(x*) > ro + 0},

we conclude that 0, O T* e X** is not p-measurable. So, 6,0 T* € X** is
a functional which is not universally measurable on Y.

(4) = (5). Let K be a w*-compact subset of Y and x a Radon Borel probability
on K such that there exists a functional y € X** which fails to be u-measurable
on K. For every subset A = K we define the “inner measure . (A)” as follows

p+(A) = sup {u(L): L a w*-Borel subset of K with L < A}.
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It is easy to see that: (i) u« is monotone and 0 < s (A) <1, V4 < K; (i) if
A c K, there exists a Borel subset L < 4 such that u(L) = p.(A); (iii) if
{A,:n = 1} is a sequence of subsets of K with A,,; = 4 , then p«(N,514,) =
== inf, . Us (A,,); (iv) a subset 4 — K is not u-measurable if and only if
s (A) + p«(K\A) < 1. For every r € R we define

A ={(eK:y(¢)>r) and B, = {Ee Ky (&) < r}.

Since s fails to be p-measurable, there exists roe R such that A4, is not
p-measurable, that is, p(4,) + e (K\A4,) < 1. As K\A,, = (1B, we
get ,u*(K\A,O) = imf,,zl,w«(B,0 +?1l_) and so there is some &y > 0 such that
M (Aro) + W (Br0+50) <L

Claim. There exists a nonempty w*-compact subset H < K such that, if V is
a w*-open subset of X* with V' n H # (), then V » H intersects simultaneously
K\A,, and K\B, , .

Indeed, let Lc A, and M < B, s, be Borel subsets such that p(L) = u«(4,,)
and (M) = p«(Byy 1 ) Clearly, p(Lu M) < p(L) + p(M) = pe(A,) + po(Bry s sy) <
< 1, whence u(K\(Lu M)) > 0.Let H = K\(LU M) be any w*-compact subset
such that, if v:= u | H, then v > 0 and supp(v) = H. Let V be a w*-open subset
with V' H # 0. Then p(V n H) > 0. Assume that VN H < A4,. Put L = Ly
U (V n H). Clearly, pu«(A4,) = p(L) = p(L) + u(V n H) > p«(A4,,), a contradic-
tion that proves that (K\4,)) n (V' n H) # (. In a similar way one can prove that
(K\B,ys5) O (V A H) # 0.

Let ¢ > 0 be such that ry + ¢ < ry + d, — ¢ and define r,:= ry, + ¢ and
0:= 09 — 2¢. Then 6 > 0. By the Claim, if & is a finite family of w*-open
subsets of X* such that V. H # 0, VVe &, for each Ve % we can find vectors
Ev, ny € V.o H if so that

Yin) <rm <r+08<y(é).

Since B(X) is w*-dense in B(X**), we can find a vector x5 € B(X) such
that

Mpxgy <1 <1 + 6 <<Exzp, VWeF.

(8) = (6). Let H be a w*-compact subset of Y, which is uniformly non
fragmentable for some 6 > 0. By using an argument similar to the one of
the implication (2) =(3), we find two sequences {r,:m >1}c R and
{X%,:m > 1} = B(X) such that, if

A, = {he H:{hx,) > 1, + J}
and

B, ={heH:<{hx,) <r,},m=>1,
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then {(4,,B,):m > 1} is an independent sequence of w*-closed subsets of H.
By an argument of compactness, for each pair of disjoint subsets M, N of N
we have ((Vnew Am) O ((Vaen B) # 0. So, we can choose 7y n € ((Vmem Am) O
O ((Vnen By). Clearly, {myy:M,N disjoint subsets of N} is a w*-N-family in
H such that

Nun (Xm) = 1 + 0, Vme M, and nyn(x,) <1, VneN.
In order to prove the implication (6) = (1) we use the following lemmas.

Lemma 6.4. Let ¢ := {0,1}" be the Cantor compact set considered as a subset
of the compact space (B(Z.,(N)),w*). There exists a w*-compact subset D = €,
homeomorphic to €, such that <6 (D) & 0" (D). Actually, there exists z, € 0" (D)
such that dist(zy,c6 (D)) = 1 = dist(co”” (D),co (D)).

Proof. Let us recall the notation introduced in the proof of Proposition 3.1:
¢ = {0,1})Y, ¥ := {0,1}=N = {0,1} U {0,1} U {0,1) U ..., the Haar probability
Aon {01} I,:={fy:Ac {0,1}”7%/ith Al = 2" —n}, I:= Jpz11,, O(0) =
= {fuel:f4(0) = 0},0:= (),es O(0)", the mapping ¥ : ¢ — {0,1} = B(/., (1)),
D:=y(%) = {01}, p:=y(A), r(n) =:20€c0"" (D), etc. Recall that Z(p ) =1
for every pe I* := BI\I.

Take pe O and let 6, € £, (I* be such that 6,(f) = f(p), Vf € £.,(I). Clearly,
5,(20) = Zo(p) = +1, but 6,(d) = d(p) = 0, Vd e D. Thus 1 < dist(zo,c0(D)) <
< dist (¢6""(D),c6(D)). As ©6"" (D) = [0,1]" and diam ([0, 1]") < 1, finally we get
I = dist(z,c0(D)) = dist(€0"" (D), & (D). 0

Lemma 6.5. Let K be a w*-compact subset of a dual Banach space X* such

that K contains a Cantor skeleton of width 6 > 0. Then there exists a w*-compact
subset H of K such that dist(c0"" (H),c6 (H)) > 0.

Proof. Let of := {k,, 10€E (6} be a Cantor skeleton of width § > 0 inside K.
Without loss of generality, we suppose that K = /" .

(A) First, we assume that K is a w*-compact subset of ¢/, and </ a uniform
Cantor skeleton of width § = 1 of K so that, for each ¢ € {0,1}" and for every
m > 1, we have =, (k,) < 0, if o(m) = 0, and n,,(k,) > 1, if 6 (m) = 1. Consider
the continuous mapping ®: K — € such that, Vk € K, ®(k)(m) = 1, if k,, > 1,
and @ (k)(m) = 0, if k,, < 0. Clearly, ® (K) = %. By the proof of Lemma 6.4 there
exist a w*-compact subset D = ¢ < /,,(I), a Radon probability x on D so that
1t = YA, A being Haar probability on %, such that, if z, = r(u) is the barycenter
of u, then dist(zy,c0 (D)) = 1. Let

D, ={deD:m,(d) =1} and D}, = {de D :m,(d) = 0}, m> 1.
By the proof of Proposition 3.1 we have u(D,,) — 1 and so p(D5) = u(D\D;) - 0

for m — 0.
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Claim. If ® (D) =: H < K, then there exists u,eco" (H) such that d(u,
co(H)) > 1.

Indeed, since ® (H) = D and ® is w*-w*-continuous, there exists a Radon Borel
probability v on H such that ®v = p. Let u,:= r(v) be the barycenter of v, that
satisfies uy € €0"" (H).

Sub-Claim. Given & > 0, there exists n,e N such that m,(up) > 1 — ¢,
Ym = n,.

Indeed, observe that 7,, (o) = 7,,(r(v)) = (a7, (h)dv(h),Vm = 1.Let0 < M <
< oo be such that ||| < M, Yhe H, and choose n > 0 with ¢ > (1 + M). Now
we choose 7, € N such that u(D,,) > 1 — n, Ym > n,, (and p(D3) < ). Then for
m > n, we have

[ () dv(h) = f@ o @B+ [, ma(B)av () 2
2 [y 19 ) + s (M) () = w(@71 (D) — Mo (@ (D) =

= u(Dp) = Mp(Dp) =1 —n = Mn =1 -

In order to show that d (1, O (H)) > 1, itis sufficient to show that |luy, — p| >1
for each peco(H). Let p = Y5_,t;h, where t;€[0,1], Y*_,t; = 1, hye H and
®(h) =:d;e D for each j. By (3) of the proof of Proposition 3.1 there exists
a sequence of integers m; < m, < ... such that =, (d) =0 for r > 1 and
j=1,..., k. So, by the definition of ® we have =, (h) <0 for r > 1 and
j=1,...k, that is, m,, (p) < O for r > 1. Thus from the Sub-Claim we obtain
lug — pll = 1. So, this proves the Claim and completes the proof of the statement
in this case (A).

(B) Now, we suppose that K is a w*-compact subset of /,-endowed with
a Cantor skeleton o/ := {k,:0 € ‘g} of width 6 > 0 associated with the numbers
(@n)az1 €7, and the sequence of canonical projections {m,:m > 1}, where
(k) = kyy Yke/,,. Let T:¢, — ¢, be the mapping such that T(x)(n) =
= (x, — a,)/0, Vne N. Then T is an affine mapping which is w*-w*-continuous
and |||-continuous. If L = T(K), then L is a w*-compact subset endowed with
a uniform Cantor skeleton T(&f ), which satisfies the requirements of case (A). So,
there exists a w*-compact subset W < L and a point w,eco"” (W) such that
dist (w,, €0 (W)) > 1. Let H:= T~'(W). Clearly, H is a w*-compact subset of
K such that T(H) = W, T'(c5(H)) < o (W) and T (co*" (H)) = &o*" (W). Thus, if
u, € 0" (H) satisfies T (up) = wy, then dist(up,co(H)) > 0, by the form of the
mapping T.

(C) Finally, we suppose that K is a w*-compact subset of an arbitrary dual
Banach space X* endowed with a Cantor skeleton o/ := {k,:0 € %} of width
d > 0 associated with the numbers (a,),» € Z,, and the sequence {x,:n > 1} =
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< B(X). Consider the continuous operator T:¢; — X such that, V(4,),=1 €73,
T((Ann=1) = Y on=14aX, € X. Observe that | T| < 1. Then, T*(K) is a w*-compact
subset of 7, and {T*(k,): o € €} is a Cantor skeleton of T*(K) of width § > 0,
that satisfies the requirements of case (B). So, there exists a w*-compact subset
W< T*(K) and a point wyeTo" (W) such that dist(wp,co(W)) > 6. Let
H:= T* (W) K. Then H is a w*-compact subset of K such that T*(H) = W
and T*(c0"" (H)) = 0" (W). Let u, € 0" (H) be such that T* (u) = w,. Taking
into account the fact that |T*|| < 1 and that co (W) = T*(co(H)) < To (W), we
get dist (up, 0 (H)) > dist(T* (up), T*(co(H))) = dist(wy,c0(W)) > 6 and this
completes the proof of the Lemma. O

Proof of (6) = (1). Let {1y : M, N disjoint subsets of N} be a w*-N-family in
some w*-compact subset H of Y. For each g € {0,1}", let M := {ne N:0(n) = 1}
and N := N\M, and define h, : = 5. Then, it is easy to see that {h,: o € {0,1}"}
is a Cantor skeleton of the w*-compact subset {h,: o € {0,1]"}" =: K < H. Now
it is enough to apply Lemma 6.5. O

Remark. By Proposition 6.3, if Y is a w*-compact subset of a dual Banach
space X*, then Y fulfills the property (P) if and only if Y does not contain a Cantor
skeleton. Actually, this equivalence holds true for the class of J -analytic subsets
of (X * w*) (see [19, Proposition 3.8]). On the other hand, in [17, Corollary 12] we
have constructed subspaces Y (non w*-# -analytic) of a dual Banach space X*
that simultaneously have the property (P) but Y fails to have 3-control inside X*.
Thus, Y contains a w*-N-family and so a Cantor skeleton by Proposition 4.3.

7. The control for 1-unconditional direct sums and Banach lattices

In order to find classes of Banach spaces with a control in the bidual better than
in the general case, we examine in this Section the class of 1-unconditional direct
sums of Banach spaces and the class of Banach lattices. First, we have the
following remark: the counterexamples we have constructed in Section 2 (a Banach
space X and two w*-compact subsets K, K, = B(X**) such that dist (K, X) = .
dist (K,, X) = 3 but dist (c6"" (K,), X) = 1 = dist(c0"" (K,), X)) are Banach latti-
ces. So, concerning the control inside the bidual, the class of Banach lattices
behaves as in the general case. However, as we see in the sequel, the behavior of
some classes of Banach lattices (as the order-continuous Banach lattices, Banach
spaces with an 1-symmetric basis, etc.) is better than in the general case. Let us
begin with the definition of 1-unconditional direct sums of Banach spaces.

Definition 7.1. A Banach space X is said to be an I-unconditional direct sum
of a family of Banach subspaces {X,: o€ o} of X, for short, X =) .., ® X,
L-unconditional, when X = [| )yeyX,] and, if x,€ X,,6, = 1,0 € o/, and A is
a finite subset of Z, then Y scq&xXall < 1Y neaXall-
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Remarks. Let X = Zam @ X, be an l-unconditional direct sum of Banach
spaces. We have:

(1) For each subset 4 — o/ there exists a projection P,: X — X such that
IP4l = 1and Py(X) = Y.es ® X..

(2) Every x€ X has a unique representation of the form x = ), ,x, with
x, € X, such that the subset {ae . :x, # 0} is countable, the above series
converges unconditionally and [|) ,c e,/ = |x||, where ¢, = +1, Vo € o/.

(3) If ueX* the o-th coordinate u, of u will be the restriction
u,:=ul X,e XFof uto X,. We will identify u with the family (u,),cs of its
coordinates.

(4) We consider each dual X7 canonically and isometrically embedded into X *
as follows. If P,: X — X, is the projection associated to X, then P}(X ) is a sub-
space of X* isometric_to X} We identify X} with P¥(X}). Consider in X* the
closed subspace Y;:= [| J,csX ], which is actually the 1-unconditional direct sum
of the closed subspaces {X;: o€ .o/}, that is, Y = Y ., @ X¥ 1-unconditional.
Let Y§be the dual of ¥,. We have the following fact.

Fact. There exists an isometric and isomorphic embedding h: Y§ — X** of Y§
into X** so that X** = h(Y;") DYy, that is, X** is the monotone direct sum of
h(Y*) and Y5, which means that every ze X** has a unique decomposition
z =z, + z, with z; € h(Y§) and z, € ¥§ such that ||z > [z,]| \/ ||z

Indeed, if z € Y for each a € &7 let z, := z | X¥be the a-th coordinate of z and
identify z with the family (zm)g‘e s of its coordinates. In order to embed Yg¥into X**,
define the mapping h: Y§ — X** as follows:

Vze Yot YueX* h(z)(u) = Y z,(u)-
ae.of

It is easy to see that h is an isometric and isomorphic embedding of Yg* into X**
such that every z € X** has a unique decomposition z = z; + z, with z, € h (Y%,
7€ Yo and |z|| = l|z,] \/ ||

(5) Observe that the canonical copy J (X) of X in X** is inside h(Y§) although
J(X) # h(Y¥) in general.

Let us investigate the control inside its bidual of a Banach space which is an
1-unconditional direct sum of WCG subspaces. First, we need the following
lemma.

Lemma 7.2. Let X be a Banach space and K a w-compact subset of X*. Given
z€ B(X**) and & > 0, there exists x € X such that ||x|| < 1 + ¢ and

VkeK, z(k)—e<x(k)—e<x(k)<z(k)+e.

Proof. Without loss of generality, we suppose that K is convex and symmetric
with respect to O (otherwise, pick €0 (K U (—K)) instead of K). Consider the
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Banach space Z = X @; R. Then Z* = X* @, R and Z** = X** @, R. Let
H,:= {(k,z(k) —3): ke K} and H,:= {(k,z(k) + 5): ke K} be two w-compact
convex disjoint subsets of Z* such that, if H = H, — H,, then H < Z* is
a w-compact convex subset (and so a w*- compact subset) of Z* fulfilling that
H n B(0;%) = 0. Thus, if we pick ¢ > 0 with 52 < ¢ < 1, then H n B(0;%) =

= (. By the Hahn-Banach Theorem there exists a vector ¢ € B(Z) such
that(h,p) > %, Yhe H. If ¢ = xo + to, with xo€ X, toe R and ||@|| = ||xo| +
+ |tol < 1, then for every (k;,z(ki) — 3) € H, and every (kyz(k,) + 3)€ H, we
have

o ([l 2(0) + %)) — o ((knz(k) — 2) > %‘9
Thus
xo(ka) + toz (k) + to% > Xo(ki) + toz (k) — to% + —Qz—g, (7.1)

whence choosing k; = k, in (7.1), we get t,e > %, that is, $ < t, < 1. So,
[xol < 1 — % Putting k; = 0 in (7.1) we get

Vke K, xo(k) + toz(k) + tog —to5 + Q—;.
Thus
1 s 2t —
VkeK, ——xo(k) < z(k) + =2 < z(k) + &.
to 2 1
On the other hand, putting k, = 0 in (7.1) we obtain
L & Q¢
VkEK, é)ssz(k)+tQZ(k)—t0§+3
Thus
2ty — 1
VkeK, z(k) —e<z(k)— 22 < — Zx(K).
2 t() t()
Therefore, if x = — X, , then x satisfies the statement of the Lemma. O

Proposition 7.3. Let X be a Banach space, which is an I-unconditional direct
sum of a family {Xa touE } of WCG Banach spaces, we say, X = Zaed ® X,
Then

(A) X has 2-control inside its bidual X*¥*.

(B) If the spaces X, are reflexive and X := Zm{, @/ X, (that is, X is the
direct {\-sum of the family { ToE .52/}) then X has I-control in its bidual X**.

Proof. We adopt the notation of the above paragraphs. So, let Y, = zme v P
@ Xk X** = h(Y¥) EDY:, etc. Observe that in the case (B) we have ¥, = Y e D
@®., X% that is, Y; is the direct co-sum of the subspaces { X a € .o/}. Let K, be
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a w-compact subset of X, such that 0 € K, and X, = [7(:]_, o € /. In the case (B)
we pick K, := B(X,). Suppose that there exist a w*-compact subset K < B(X**)
and some real numbers a,b > 0 such that

(1) dist(co""(K), X) > b > 2a > 2dist(K, X) > 0 in the case (A).

(2) dist(co™" (K),X) > b > a > dist(K, X) > 0 in the case (B).

By Lemma 2.3 we have the following fact.

Fact. There exist / € S(X***\ and z, e 0" (K) with inf y (zo — X) > b (and
S0 Y € S(X***) n X*), and a w*-compact subset § # H = K such that for every
w*-open subset V of X** with V n H # § there exists £ € T0"" (V n H) such that
Y.¢» > b.

Now we proceed step by step:

Step 1. By the Fact there exists a vector &, € 0" (H) such that {y,&,> > b.
Since B(X*) is w*-dense in B(X***), we can find a vector x}e B(X*) such that
(&, x¥ > b and another vector 5, € H so that {n;, x> > b. Let n;, = v, + w, with
v; € h(Ys") and w, € Y5 Then a > dist(n,, X) > dist(n;, h(¥59)) = [, whence

(o, xt = {p, xH — w, xH > b — a.

As (v, xH = Zawvla(xj’;) > b — a, we can find a finite subset &/, — &/ such
that, if y, is the restriction of x¥ to Y.y, D X, (50 Yy = Yo, Xh€E
GB(ZD@.MH @ X;k) < B(Yo)), then (i, y,» = <{v,y;) > b — a.

Step 2. Let V; = {ue X**:{u,y;> > b — a}, which is a w*-open subset of
X** with V;nH # @, because n,€V,n H. By the Fact there exists
&ew (VinH) with (6> > b Let 0< 2 <27' A (KY,&) — b) A
A (a(dist(K,X))™" — 1). Consider in X** the subset L := {&} U (D ew, Ko)-
Clearly L, is a w-compact subset of X**. Moreover, in the case (B), we have

B() sewr, @1 X,) = L. Now by the above Lemma 7.2 there exists a vector x¥e X*
such that ||x¥|| < 1 + ¢, and

VkeLl, <lp,k> — & < <k,x;‘> < <l//,k> + &.

In particular, {&,x¥ > b + & and [{xtk)| < & < 272 Vke ) ., K, because
Y (k) = 0. Since {&,x¥> > b +¢,, we can choose 1, € V; N H such that (1, x3)> >
> b + ¢ and also <{m,y;) > b — a because n,e V. Let n, = v, + w, with
v,€h(YY) and w,e Yy Observe that [w,| = dist(ny,h(Ys) < dist(n, X) <
< dist(K,X) < a and [{wy,xH| < (1 + ¢)dist(K,X) < a. Now we choose
y, and &7, in the cases (A) and (B) as follows:

Case A. We have
o, xP) = X3 — Wy, X3 = i, X3 — [Kwy, XD > b — a.

Thus, as vy, X3 = Y pew{rx%> > b — a, we can find a finite subset ., of
of satisfying .o/, = o/, = o/ such that, if y, is the restriction of x§t0 ) ., D X,
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(50 Y2 = Zae&iz xikanaElez @ X¥c Xy with [y, <1+ 81)5 then {1, y.) =
= {0, y,> > b — a. Observe that for every k€ | J,cs, K, we have ¥ (k) = 0,
whence

I kDl = K35k < & < 272,

Case B. Let 7 := X5 [ D perr, D1 X, (that is, y,; = Yy X3) and yp, = xF —
— Yar- Since I<x21:k>l < &1, Vk € Z(xeyll Kw and B(Zae.ﬂ, @l Xoc) < Zae.pll Kw then
2]l < &. So

0y = 1, X3 — A, X35 — (0, 7210 = X3 — &g —a>b —a.

Since vy, vy = Zae(m«/l {0y, X%,> > b — a, we can find a finite subset .7, = o/\.o/;
such that, if y, is the restriction of X§ t0 Y., @D X, (S0 Y2 = Y pew, X5 €
€Yyoaed, D XFc Yy with [|y,]| <1+ &), then {mp, 1, = (v, 1) > b — a.
Further we proceed by iteration. We obtain the sequences {y:k > 1} < Y,
{m:k>1} < K and {o#,: k > 1}, o/, < o, fulfilling the following conditions:

Case A. In this case we have:
(1) The finite subsets o/, of .« satisfy o/, < o, for k > 1.

(11) ykeZaE.wik @ X;kc YO: “yk“ < 1 + Ek—15 k = 2, and <17]ayk> > b — a for
j = k with j,ke N.

(iii) For every h € | Jocw, K, we have [y 1, h)| < 27571 Vk > 1.
Let o/ := Unzl A Xoi= meo @ X, and let Py:X — X, be the canonical

projection on X, with norm |Py| = 1. The space X admits the monotone
decomposition
X =X, X, where X,;:= Y X,.
aeS\A o

Therefore we get the following monotone decompositions
) m m
X* = X§¢ EbX’f, X** = XF* PXFF X*¥* = XF** PXF** etc.,

with projections Py: X — X, P§: X* — X@& P§* 1 X** o X% Pgvx ; XHd*
— X§** etc. Observe that P(y) = y, Vk > 1, that is, y, e X§= P§(X*),
Vk > 1. Let no be a w*-cluster point of the sequence {m :k > 1} in X**
Obviously #no€ K. Moreover, since <(mpy) >b—a, Vj>k we get
(o yiy = b — a, Yk > 1. Let ¢, be a w*-cluster point of {y,:k > 1} in X***,
Then

(1) @oe B(X**¥). Actually o€ Pg** (X***) = X§**, that is, P§**(po) = @o.

(ii) By construction @ [ K, = 0, Vo € o/,. Thus ¢, € X3, because ano K,
generates X,.

(iii) {@p, Moy = b — a because {1y, y,> = b — a, Vk > 1.

Let W:= P§*(K) = B(X#*), which is a w*-compact subset of X§*, and
wo = P§*(n,). Obviously w, € W.

39



C_!aim 1. dist(wp, Xo) < a.
Indeed, let x € X be arbitrary. Then
dist(wo, Xo) = [wo — Pg*x|| = | P§*(no) — P§*x|| < o — x| .
That is, dist(wyXo) < dist (1o, X) < dist(K,X) < a.
Claim 2. dist(we, Xo) = b — a.
Indeed, as ¢, € B(X***) n X§ and

Lo, wop = Lo, P§*n0) = (P§**@o, 1m0y = {@o, Moy = b — a,

we conclude that dist (wp, Xo) > b — a.
Asa < b — a we get a contradiction which proves the statement in the case (A).

Case B. In this case we have:

(i) The finite subsets o/, k > 1, of .o/ are disjoint.
(ll) ykEZae&/k ®0X:‘C 1,05 ”yk” < 1 + 8k—19k = 2, and <rli=yk> > b — afor
j = k with j,ke N.
(iii) For every ne N we have ||}/, y| < 2.

Let 1o be a w*-cluster point of the sequence {r:k > 1} in X**. Obviously
1o € K. Moreover, since {1, yxp > b — a, Vj > k, we get {1, x> = b — a > 0,
Vk > 1. Thus <no, Y 71y;» = n(b — a), ¥n > 1. Since |}/ yill < 2,Vn > 1, we
get a contradiction which proves the statement (B). O

Proposition 7.4. Let X be a Banach space, which is the 1-unconditional direct
sum X =3 ., ® X, of the family {X,: o€/} of WCG Banach spaces. If
K < X** is a w*-compact subset such that K n X is w*-dense in K, then
dist (@ (K), X) = dist (K, X).

Proof. The proof is analogous the the one of Proposition 7.3, but in this
case, as K n X is w*-dense in K, we can choose #;,, in V, n K n X with
(Mg 1, X 1) > b so that . = vy, w, = 0. O

Definition 7.5. Let X be a Banach space which admits the decomposition
X = Zaew‘ @ X, as an 1-unconditional direct sum of closed subspaces X, We
say that the decomposition X =Y ., @ X, is of countable type if for every
u € X* the support supp (u) := {a€ o/ :u, # 0} of u is countable, (u,),.., being the
set of coordinates of u, that is, u,:= u | X, = u O P, where P,: X — X, is the
canonical projection.

Lemma 7.6. Let X be a Banach space which admits a decomposition
X =Y 0 ® X, as an I-unconditional direct sum of the closed subspaces X,
The following statement are equivalent:

(1) The decomposition X =) .., @ X, is not of countable type.
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(2) X has an isomorphic copy of ¢, (N]) disjointly disposed with respect to the
decomposition X = Zaw @ X, that is, there exists a subset o/, < </ with
cardinality |/ || = N, and for each o € </ an element v, € X, so that the family
{v,: € A} is equivalent to the canonical basis of ¢, (N,).

Proof. (1) = (2). If the decomposition X = Z“E»‘?’ @ X, is not of countable
type, there exists some ue X* such that the subset /,:= {a€ o/ :u, # 0}
satisfies |.o7g| > N, where u,:=u [ X, = uoP,and P,: X — X, is the canoni-
cal projection. By passing to a subset if necessary, we can find a real number
¢>0, a subset o/, = o/, with || =N, and a family {,:0€o/,} with
v, €B(X ») so that {u,v,> = {u,v,» > & This fact proves, by a standard argument,
that the family {v,: o€/} is equivalent to the canonical basis of ¢, (X;) and
generates a copy of /;(¥,), which is disjointly disposed with respect to the
decomposition X = Y., P X,.

(2) = (1). Let &/, = o/ be a subset with cardinality |/, = N\, and for each
o€ o/, let v, be an element of X, so that the family {va ‘aEe o 1} is equivalent to
the canonical basis {e,: o€ .o/,} of /,(</,). Let T:¢,(</,) > X be the isomor-
phism between ¢, (/) and the closed subspace generated by {v,: o € o7, } so that
T(e,) = v, Since T*:X* >/ (o/,) is a quotient mapping and so
T*(X*) = /., (<)), if wy€ /. (oZ,) is such that wy(a) = 1, Vo€ o7, there exists
a vector u € X* such that T* (u) = w,. Then for every a« € o/, we have

<M,Ua> = <M,T€a> = <T*u9ea> = <W07 ea> =1,

and this proves that u is an element of X* that does not have countable support
with respect to the decomposition X = Zaw @D X, O

Proposition 7.7. Let X be a Banach space that admits a decomposition of
countable type X = Ziel @ X, as an 1-unconditional direct sum of WLD (weakly
Lindelof determined) closed subspaces {X;: i€l } Then X is WLD and so for every
convex subset C = X, every w*-compact subset K of X** and every boundary
B = K we have dist(co"" (K), C) = dist (<o (B), C).

Proof. 1t is well known that the dual unit ball of a WLD space is w*-angelic (see
[1]). So by Proposition 4.9 it is enough to prove that X is WID, that is, that for
some set J there exists an injective continuous linear operator T: X* —
= (5, (J):={fel,(J):supp (f) is countable} which is w* to pointwise conti-
nuous (see [1, Definition 1.1]). Since each X; is WID, there exist a set J; and an
injective linear operator T;: X¥— /¢, (J ,-) which is w* to pointwise continuous and
satisfies || T;|| < 1. We assume that the family of sets {J;: i € I} is pairwise disjoint
and put J := | )i J;. Define T: X* — £, (J) such that, if x* € X* and x}*e X}is
the restriction x= x* | X,, then Tx* = (T;(x})e;. Clearly T is an injective
norm-continuous operator which is w* pointwise continuous. Moreover, as the
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decomposition of X is of countable type, we have that supp (Tx*) is countable for
every x* € X* and this completes the proof. O

In the sequel we apply the above results to the class of order-continuous Banach
lattices. First, we see the well known fact that, if X is an order-continuous Banach

lattice, then X is an 1-unconditional direct sum of disjoint closed ideals which are
WCG.

Lemma 7.8. Let X be an order-continuous Banach lattice with weak unit
e > 0. Then X is WCG.

Proof. Tt is well known (see [23, p. 28]) that the interval [O,e] 1= {xe X:0<
< x < e} is a w-compact subset of X. Let us see that X = [[0,e]], that is, X is
the closure of the space generated by [0, e]. Pick a positive element x € X *. Then
ne A x 1 x forn — oo, whence || x — ne A x| | O because X is order-continuous.
So | Ju=1[0,ne] = (J,21n[0,e] is dense in the positive cone X*. As
X = X" — X", we conclude that X is the closure of the subspace generated by
[0,e]. O

Lemma 7.9. If X is an order-continuous Banach lattice, then X is the

1-unconditional direct sum X = Zaw‘ @ X, of a family of closed ideals
{Xa A=A } mutually disjoint, such that each X, has weak unit and so it is WCG.

Proof. By [1.a.9] of [23] X admits the expression X = Zaeﬂ @ X, as a direct
sum of a family of closed ideals mutually disjoint {X,:x€ .2/} (so as an
1-unconditional direct sum), such that each X, has weak unit. By the previous
Lemma 7.8 we get the statement. O

Proposition 7.10. Letr X be an order-continuous Banach lattice. If K is
a w*-compact subset of X**, then dist(c0"" (K), X) < 2dist(K,X) and, if K n X
is w*-dense in K, then dist(¢6"" (K), X) = dist(K, X).

Proof. Apply Lemma 7.9, Proposition 7.3 and Proposition 7.4. O

Proposition 7.11. Let X be an order-continuous Banach lattice that does not
have a copy of ¢,(N,). Then X is WLD and so for every convex subset C < X,
every w¥-compact subset K of X** and every boundary B < K we have
dist (& (K), C) = dist (c5 (B), C).

Proof. Clearly, if X is an order-continuous Banach lattice that does not have
a copy of /;(N;), then X admits, by Lemma 7.6 and Lemma 7.9, a decomposition
of countable type X = ) ,.., @ X, as an l-unconditional direct sum of WCG
closed ideals X,. So, this result follows from Proposition 7.7 O

Proposition 7.12. Let X be a Banach space with an I-unconditional basis
{e,~ :i € I} equivalent to the canonical basis of ¢, (I). Then X has I-control in its
bidual X**.
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Proof. The proof is analogous to the one of part (B) of Proposition 7.3, putting
X; = [e], i€, and taking into account the fact that X* and the subspace Y, of
X* are canonically isomorphic to /., (I) and ¢, (I), respectively. O

A Banach space X has an l-symmetric basis {¢:i€l} whenever X =
= [{¢:iel}] and for every countable subset J — I the family {¢:jeJ} is
a countable 1-symmetric basis of [ {¢:j e J}](see p. 113 of [22]) for the definition
of a countable 1-symmetric basis).

Proposition 7.13. Let X be a Banach space with an 1-symmetric basis. Then
X has I-control in its bidual X**.

Proof. Case 1. Let every element of the dual X* have countable support. In
this case the result follows from Proposition 7.7.

Case 2. Suppose that there exists a vector u € B(X*) with uncountable support.
By Proposition 7.12 it is enough to prove the following claim.

Claim. If there exists a vector u € B(X*) with uncountable support, then the
1-symmetric basis {¢:i€ I} of X is equivalent to the canonical basis of ¢, (I).

Indeed, since supp(u):= {ie I :u(e;) # O} is uncountable, we can find a real
number ¢ > 0 and an uncountable subset J < supp (u) such that |u(e;)| > &, Vie J.
Let us prove that the family {¢: i€ J} is equivalent to the basis of #; (J). Suppose
that the basis {¢: i € J} is normalized and choose a vector of the form ) ; <<, 4e
ip€J. Let g = +1 so that u(ee;,) = [(Aule) = e, 1 < k < n. Then

i

Yol =1 Y, Aeld =1 Y el =
I<k<n I<k<n 1<k<n
= |u( Y &) =€ Y A,
l<k<n 1<k<n

and this implies that the family {¢: i € J} is equivalent to the basis of /; (J). As the
basis {¢:i€ I} of X is symmetric, finally we conclude that {¢ : i € I} is equivalent
to the canonical basis of /,(I), and this proves the Claim and completes the proof
of the Proposition. O

8. The control inside ¢ (I)

Throughout this Section H will be a Hausdorf completely regular topological
space and C,(H) will denote the Banach space of continuous bounded functions
f:H — R with the supremum norm. We consider C,(H) as a closed subspace of
(¢ (H), Ill o). What is the control of C,(H) inside (/s (H), [ )? This problem
has been studied in [4] and [16]. In this Section we use the Simons inequality to
extend Proposition 3.1 of [16].
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If ke H let ¥"* denote the family of open neighborhoods of k in H. Now, we
define the oscillation Osc(f,k) of f:H — Rin k€ H as:

Osc(f,k) = lim (sup {/ (i) — f(j): i,j € V}).
Vey'k
The oscillation of f in H is:

Osc(f) = sup{Osc(f,k): k € H}.

If H is a normal topological space and f e/, (H), we have dist(f, C,(H)) =
= %Osc(f) (see [3, Proposition 1.18, p. 23]). We say that a topological space
H belongs to the class & (for short, H € §) if for every A « H x H and every
he H, with (h,h) € A, there exist d € H and a sequence (o,),>; in A such that
a, — (d, d) as n —> 00. So, H is in & provided: (1) H is metrizable; (2) H satisfies
the first axiom of countability; (3) H x H is a Fréchet-Urysohn space.

Proposition 8.1. Let H be a normal topological space with He §, W < ¢, (H)
a w*-compact subset and B = W a boundary for W. Then

dist (€0"" (W), C,(H)) = dist(B, Cy(H)).

Proof. Suppose that there exist a w*-compact subset W < B(/,, (H)), a bound-
ary B « Wand two real numbers a,b > 0 such that

dist(co"" (W), C,(H)) > b > a > dist(B,C,(H)).

Pick f, e co"" (W) with dist(fy, C,(H)) > b. Then there exists a point ko € H such
that 30sc(fy, ko) > b. So, there exist ¢ > 0 and, for every Ve ¥, two points
injvy€ Vsuch that

foliy) — fo(jy) > 2b + «.
In particular, (ko,ko)€ {(injy): Ve ?™}. Since He F there exist a sequence
{(iwju) :n = 1} = {(injy): V€ 7"} and a point hye H such that (i,,j,) = (ho, ho).
For every n > 1 let T,:/,,(H) - R be such that T,(f) = f(i,) — f(j,), for all
fet,(I). Clearly, T, is a linear mapping which is |||-continuous weak*-conti-

nuous and ||T,| < 2. Moreover, we have T,(fo) > 2b +¢ Vn>1, and
lim,,, T,(f) = 0 for every f e C,(H).

Claim. For every f§ € B we have lim sup, ., T, () < 2a.

Indeed, fix BeB and, as dist(B,C,(H)) < a, find fe C,(H) such that
B — fll < a. We have

lim sup T, (B) = limsup (T, (/) + T.(B — f)) =

n— o0 n— oo

= limT,(f) + limsup T,(8 — f) < 2a,

n— oo n—oo

where we have applied that lim,_., T,(f) = 0, |T,| < 2 and | — f|| < a.
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By Simons inequality [28, 2. Lemma] we have

sup [lim sup T, ()] > inf[ sup g(k): geco((T)us1)]-
peB n— oo kecow* (W)

So there exists some g € co((T,),~1), we say, g = Y7_,4,T, with 1, > 0 and

Yh_12,=1, such that supkegaw*(w)g(k) < 2a + e On the other hand, as

foeT" (W) and T,(fo) = fo(in) — fo(j.) > 2b + & we have

P

sup g(k) > > AT.(fo) > 2b + e,

kecow™ (W) n=1
whence we get 2a 4+ ¢ > 2b + ¢, a contradiction, and this completes the proof.
U

Corollary 8.2. Let K be a scattered compact Hausdorff space such that
K® = (. Then for every w*-compact subset W < ¢, (K) and every boundary B of
W we have dist (B, C (K)) = dist (EW* (W), C(K)).

Proof. By Proposition 8.1 it is enough to prove that K € §. As K® = §, then
K is the topological sum of a finite number of disjoint clopen subsets, say
K = @, K,, each K; being the Alexandrov compactification K; = oJ; of
some discrete set J;. So, K has property & if and only if each oJ; has. Now apply
the trivial fact that the Alexandrov compactification oJ of a discrete set J has

property &. O
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