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On Wiener’s type regularity of a boundary point
for higher order elliptic equations

VLADIMIR MAZ’ YA

1 Introduction

In 1924 Wiener [1] gave his famous criterion for the so called regularity of
a boundary point.

A point O at the boundary 92 of a domain 2 C R” is called regular
if solutions of the Dirichlet problem for the Laplace equation in {2 with the
Dirichlet data, continuous at O, are continuous at this point. (I do not want
to explain in which sense the solution is understood—this is not quite trivial
and is also due to Wiener [2].)

Before Wiener’s result only some special facts concerning the regularity
were known. For example, since (by Riemann’s theorem) an arbitrary Jordan
domain in R? is conformally homeomorphic to the unit disc, it follows that
any point of its boundary is regular.

As for the n-dimensional case, it was known for years that a boundary
point O is regular provided the complement of {2 near O is so thick that
it contains an open cone with O as a vertex (Poincaré [3], Zaremba [4]).
Lebesgue noticed that the vertex of a sufficiently thin cusp in R? is irregular
[5]. Therefore it became clear that, in order to characterize the regularity,
one should find proper geometric or quasi-geometric terms describing the
massiveness of R” \ {2 near O.

To this end Wiener introduced the harmonic capacity cap(K) of a com-
pact set K in R™, which corresponds to the electrostatic capacity of a body
when n = 3. Up to a constant factor, the harmonic capacity in the case
n > 2 is equal to

inf{/ |gradu|® dz : w € C°(R™), u > 1 on K}.
R’n

For n = 2 this definition of capacity needs to be altered.

The notion of capacity enabled Wiener to state and prove the following
result.
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Theorem (Wiener). The point O at the boundary of the domain 2 C R*,
n > 2, is reqular if and only if

> 20Dk cap(By-i \ £2) = . (1)
E>1

We assume that O is the origin of a coordinate system and use the
notation B, = {z € R” : |z| < p}. It is straightforward that (1) can be
rewritten in the integral form

/ cap(B, \ 2) do

@p(By) o )

Wiener’s theorem was the first necessary and sufficient condition char-
acterizing the dependence of properties of solutions on geometric properties
of the boundary. The theorem strongly influenced potential theory, par-
tial differential equations, and probability theory. Especially striking was
the impact of the notion of the Wiener capacity, which gave an adequate
language to answer many important questions. During the years many at-
tempts have been made to extend the range of Wiener’s result to different
classes of linear equations of the second order, although some of them were
successful only in the sufficiency part. I mention here three necessary and
sufficient conditions.

First, for uniformly elliptic operators with measurable bounded coeffi-
cients in divergence form

u Z (aij (@) Uz, )e;, (3)

7,7=1

Littman, Stampacchia and Weinberger [6] proved in 1963 that the regularity
of a boundary point is equivalent to the Wiener condition (1).

Second, in 1982 Fabes, Jerison and Kenig [7] gave an interesting analog
of the Wiener criterion for a class of degenerate elliptic operators of the
form (3).

The third criterion for regularity, due to Dal Maso and Mosco [8], con-
cerns the Schrédinger operator

u— —Au+ pu  in £2,

where p is a measure. It characterizes both the geometry of {2 and the
potential u near the point O.
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It seems worthwhile to mention a recently solved problem concerning a
non-linear equation, which remained open for twenty five years. I mean the
question of the regularity of a boundary point for the operator

u — div(| gradu|P~? gradu) in £2, (4)

where p > 1. This differential operator, often called the p-Laplacian, appears
in some mechanical applications and is interesting from a pure mathematical
point of view.

In 1970 I proved [9] that the following variant of the Wiener criterion is
sufficient for the regularity with respect to (4)

/0 (p-cap(Ba \ 9)>1/(p1) do _ %)

p-cap(B,) o

Here 1 < p < n and the p-capacity is a modification of the Wiener capacity
generated by the p-Laplacian. This result was generalized by Gariepy and
Ziemer [10] to a large class of elliptic quasilinear equations

div A(z,u, gradu) = B(x,u, grad u).

Condition (5) and its generalizations also turned out to be relevant in
studying the fine properties of elements in Sobolev spaces. See, e.g. the
book [11].

For a long time it seemed probable that (5) is also necessary for the
regularity with respect to (4), and indeed, for p > n — 1, Lindqvist and
Martio [12] proved this for the operator (4). Finally, Kilpeldinen and Maly
gave a proof valid for arbitrary values of p > 1 [13]. A comprehensive expo-
sition of the area surrounding these results can be found in the recent book
by Maly and Ziemer [14].

So far I spoke only about the regularity of a boundary point for sec-
ond order elliptic equations. However, the topic could be extended to in-
clude other equations, systems, boundary conditions and function spaces.
In principle, the Wiener criterion suggests the possibility of the complete
characterization of properties of domains, equivalent to various solvability
and spectral properties of boundary value problems.
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2 Regular points for arbitrary even order elliptic
equations

Let P>, (D.) be a strongly elliptic scalar or square matrix homoge-
neous differential operator of order 2m with constant coefficients, and let
D, =(9/idxy,...,0/i0xy).

Consider the Dirichlet problem
u € H™(12),

where £ is a bounded domain in R” and H™(£2) is the completion of C§° (£2)
in the norm of the Sobolev space H™({2).

Definition 1. We call a boundary point O regular with respect to Pay, (D)
if, for any f € C§°(£2),

u(x) = 0asz — O.

For n = 2,3,...,2m — 1 the regularity is a consequence of the Sobolev
imbedding theorem. Therefore, we assume n > 2m. One can show that in
the case of the Laplacian this definition of the regularity corresponds to that
given in the Introduction.

A general problem is to find more or less explicit conditions for regu-
larity. Contrary to the case of the scalar second order equation with real
coefficients, this problem is in a non-satisfactory state. Before mentioning
a few known facts I introduce the m-harmonic capacity cap,, (K) of a com-
pact set K C R*,n > 2m, defined as

inf / Z IDu(x)*dx : u € C§°(R™), u =1 in a neighbourhood of K}.

Rn la]=m

(This definition needs to be changed in the case n = 2m.) The extremal
function U, of this variational problem will be called the m-harmonic po-
tential.

For m = 1 this capacity is proportional to Wiener’s capacity. It is
a deeper fact that for m > 1 the capacity cap,,(K) is equivalent to the
potential theoretic Riesz capacity of order 2m. In other words, replacing
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the condition u = 1 near K in the definition of cap,,(K) by u > 1 on K we
arrive at an equivalent set function (see [15], Theorem 9.3.2/1).

In 1977 I proved that for n = 4,5,6,7 the Wiener type condition

/cap2<Ba \ Q) do
0

capy(B,) o

(7)

garantees the regularity of O with respect to the biharmonic operator A?
[16], [17].

The difference between the conditions (1) and (7) is that the harmonic
capacity cap is replaced by the biharmonic capacity cap,.

The restriction to dimensions n < 8 is dictated by the method of proof
based upon the property of weighted positivity of the biharmonic operator:

/n u(z) A%u() J% > 0. (8)

Unfortunately, this property fails for n > 8.

As a byproduct, in the same paper I proved that the Green function of
the Dirichlet problem for A? satisfies

|G2(l',y)| = | (n) n= 5767 77 (9)

|n 10 _ on—4"

where x,y are arbitrary points of 2 and c¢(n) is a constant independent
of (2.

Extensions of the results obtained in [17] to the polyharmonic operator
A™ m > 2, were stated (without proofs) in my and Donchev’s article [18],
where the dimensions n = 2m, 2m + 1, 2m + 2 were considered. In what
follows I prove all theorems formulated in [18] adding some new results. In
particular, I show for the same dimensions as in [17], [18] that the regular-
ity with respect to A™ is a local property, i.e. it does not depend on the
geometry of 2 at any positive distance from the point O.

Now I formulate some open problems connected with the above men-
tioned results [19].

Problem 1. Let n > 8 if m = 2 and n > 2m + 3 if m > 2. Prove or
disprove that the point O is reqular with respect to A™ provided

cap,,(Bo \ 2) do _
Ly = (o)
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Problem 2. Let n > 8 if m =2 and n > 2m + 3 if m > 2. Prove that the
Green function G,, of the Dirichlet problem for A™ in an arbitrary domain
2 C R* satisfies

c(m,n)
Gmxay Siv 11
G0 < =i ()

where c¢(m,n) is independent of 2.

Clearly, (11) leads to the following estimate of the maximum modulus
of the solution v € H™({2)

l[ull £ () < c(m,n,mes, 2)||f]|L, ()

where p > n/2m. However, the validity of this estimate for the same n and
m as in Problem 2 is also an open question. Moreover, it has not been proved
that u € Lo (£2) for any f € C§°(£2) without any assumptions about 942.

It is unknown whether (10) is also a necessary condition which can be
stated as

Problem 3. Prove or disprove the following assertion: Let n > 2m. If O is
reqular with respect to A™, then (10) is valid.

Perhaps, in order to prove the necessity of (10) it would be helpful to
verify or disprove the following estimate for the m-harmonic potential of a
compact set K C Bj:

K
U, ()] < c(m7n)c|11|)+(2m) for |z] > 2, (12)
where ¢(m,n) is independent of K and n > 2m.

It may happen that the condition (10) is sufficient (and even necessary
and sufficient) for the regularity with respect to an arbitrary strongly elliptic
scalar operator Py, (D,) with real coefficients, provided this operator has
a positive fundamental solution in R®, n > 2m. The importance of the last

restriction will be commented on later in Sec. 4.

3 The Holder regularity and the k-regularity

We say that O is Holder regular with respect to Pa,, (D) if the solution of
(6) with an arbitrary f € C§°(£2) satisfies

|u(z)] < efx|® (13)

with some positive a.
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While discussing the Holder regularity I shall restrict myself to the op-
erator A™, 2m < n.

Ifm=2n=56,Torm>2n=2m+ 1,2m + 2, one can prove that
the solution of (6) satisfies the following estimate for small p and r € (0, p)

sup |u] <c¢ Sup |u|exp< C/ (14)
B

-N iy

cap,, (Bo \ £2) do
cap,(Bs) )’

where ¢ and C do not depend on r and p. For the Laplacian and for the
operator (3) with bounded measurable real coefficients this estimate was
proved in [20], [21]. By (14) the Holder condition (13) follows from the
inequality

(Bs» Q
lim inf / capy \ LAY (15)
r—0 |logr| cap,, (B o

Although this condition for the Holder regularity with respect to A™ is
precise in a sense, a simple counterexample shows that it is not necessary
and that it is impossible to give an equivalent description of Holder reg-
ularity in terms of the Wiener integral. The sufficient condition (15) was
improved in [22] for the case m = 1 (see also [23], where a similar result was
obtained for second order elliptic differential operators in divergence form
with measurable bounded coefficients).

Problem 4. Find a necessary and sufficient condition for the Hélder regu-
larity of a boundary point with respect to the Laplace operator.

Without being precise, one can define the k-regularity of the point O
with respect to Poy,(D.), 0 < k < m, as follows. We say that O is k-regular
if the k-th gradient of the solution to (6) with an arbitrary f € C§°(2)
vanishes at O in some sense.

The question of k-regularity was treated by Maz’ya and Tashchiyan [24],
where a capacitary sufficient condition for the 1-regularity with respect to
A? in a 3-dimensional domain was found. I prefer not to discuss this condi-
tion in its general form and restrict myself to an example.

Let a cusp be given in spherical coordinates (r,0,¢), 0 < ¢ < 2m,
0 < © < 7, by the inequalities 0 < @ < h(r), where h is a continuous
increasing function on [0,1] such that h(0) = 0 and h(2r) < const h(r).
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I

We consider the Dirichlet problem for the operator A2 in the exterior
of this cusp. In this special case the sufficient condition for the 1-regularity
found in [24] is equivalent to

/Oh(a)2 %‘7 = 00. (16)

Problem 5. Prove or disprove that (16) is necessary for the 1-reqularity of
the above cuspidal point.

4 Regularity of the vertex of a cone

For the time being there are no results on the regularity of a boundary
point O with respect to the general operator P, (D,) similar to those in
Sec. 1 for A™. I have in mind sufficient conditions obtained without a priori
assumptions about the structure of 92 near O. It was recently discovered
that the situation is indeed more complicated when we turn to the general
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operator. We shall see that even such a simple singularity of 92 as the
vertex of a cone gives rise to unexpected phenomena.

Speaking about a cone I shall always assume that its complement has
a non-empty interior. Then, as I mentioned in the Introduction, the vertex
is regular if m = 1, Py,,(D;) is scalar and has real coefficients. In [25] and
[26] the regularity of the vertex of an arbitrary cone was proved for A? and
for the Lamé operator of linear isotropic elasticity (as well as for the Stokes
system although it does not satisfy the above condition on Py, (D,)).

A starting point for the derivation of these and similar results as well
as for the construction of counterexamples is the well-known asymptotic
formula for the solution of the problem (6) near the origin:

al k x
u(z) ~ const|z|* Z (log|z|) " wx <m> . (17)

k=0

Here A is an eigenvalue of the Dirichlet problem for an elliptic polynomial
operator pencil on the domain which is cut out by the cone on the unit
sphere. The functions ¢y, on this spherical domain form a Jordan chain of
the pencil corresponding to A.

By (17), information about A and {¢ } leads to results on the continuity
and differentiability properties of . In particular, if there exist eigenvalues
of the above mentioned operator pencil in the strip

{AeC:0>ReA>m—n/2} (18)

then there are solutions of (6) which are unbounded in an arbitrary neigh-
bourhood of O and hence O is irregular.

4.1 Second order operators with complex coefficients

It turned out [27], Ch. 10, that the strip (18) may contain eigenvalues of
the operator pencil corresponding to strongly elliptic operators

Py(Dy) = Y a;0*/0x;0x; (19)
7,k=1

provided n > 4 and some coefficients a;; are non-real. This result was ob-
tained by application of a singular perturbation technique developed in [26].



128 Vladimir Maz’ya

Consider the equation (or the system)
Py (Dy)u = 0 (20)
in the complement of a thin cone
Q. = {x = (y,xn) ER" : 2, >0, x;ly € we}

where ¢ is a small positive parameter and w, = {y eR1: e7ly € w}
with w being a bounded domain in R* 1. We look for a solution of (20)

u(e, ) = Oy ( %) (21)

satisfying the zero Dirichlet conditions on 9Q. \ { O}. In [27] an asymptotic
formula is given for small eigenvalues A(¢) of the above mentioned operator
pencil on the spherical domain.

2l

For the simplest case of the scalar equation (19) this formula has the
explicit form

Ae) ~ e 3((n—2)|8™ 1))~ cap(w; Po(Dy,0))

(22)
n— 2—n)/2 n n—3)/2
x (det(ajk)kzll)( )/ (det(ajk)j,kzl)( / :
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where |S™ 71| is the area of the (n — 1)-dimensional unit sphere and
cap(w; Py(Dy,0)) is a complex valued function of the domain w which is
a generalization of the harmonic capacity. This set function is defined by

n—1
cap(wi oDy 0) = [ aju(0w/0y;)(0w/0m) d
R™\w Jk=1

where w is the solution of the Dirichlet problem
Py(Dy, 0)w(y) =0, y e R"I\T; w(y) =1, y € dw,
vanishing at infinity.

For n > 4 we can choose the coefficients a;; in such a manner that the
inequalities 0 > Re A > 1 — n/2 are fulfilled, which implies the irregularity
of O.

This construction fails when n = 3 or n = 4 which gives rise to

Problem 6. Prove or disprove that for n = 3 (n = 4) a vertex of a cone
is regular with respect to an arbitrary scalar elliptic operator Po(D.) with
complex coefficients.

Using unbounded solutions of the form (21) to the Dirichlet problem for
the equation P»(D,)u = 0, one can deduce, [27], Ch. 10, that H!-solutions
of the uniformly strongly elliptic equation

Z (ajk(x)uzj)mk =0 (23)

jk=1

unbounded near an interior point of the domain may exist, provided n > 4
and some of the coefficients are non-real. In other words, for the equa-
tion (23) with complex coefficients the De Giorgi-Nash theorem on the local
continuity of solutions is not valid if n > 4.

Problem 7. Prove or disprove that for n = 3 (n = 4) solutions of the
uniformly strongly elliptic equation (23) with measurable bounded complex
coefficients are Hdélder-continuous in {2.

For n = 2 the Hoélder continuity of solutions to (23) with complex coef-
ficients follows from the well-known theorem of Morrey.
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4.2 Higher order operators with real coefficients

I turn to the regularity of a conic point with respect to a higher order scalar
elliptic operator Py, (D,) with real coefficients. For the biharmonic operator
the regularity was proved in [25] without restrictions to the cone. However,
for other, even very simple, fourth order equations, the situation may be
different.

Theorem (Maz'ya, Nazarov [28], see also [27], Ch. 10). Letn > 8, a > 0,
and (n — 3) arctan+/a € (2m,4w). Then there exist an open cone C C R"
and a function f € C§°(C'\ {O}) such that a solution uw € H*(C,loc) of the
Dirichlet problem

A?u(x) + a(8/0z,) u(z) = f, x € C,
u(z) =0, Vu(x) =0, x € 9C,

is unbounded near the vertex of C; the condition on the coefficient a is
equivalent to

a>5+2V5forn=8, a>3forn=09.

The proof is based upon the following asymptotic formula for A(¢) in
(21):

Ae) ~ e"5kF(0,...,0,1),

where F(z) is a fundamental solution of the operator A2 +a(9/dx,)* in R”
and k is a positive constant proportional to the biharmonic capacity of w.
It can be proved that this fundamental solution is negative at the point
(0,...,0,1), which implies the theorem.

This argument shows that for higher order equations in the case
n > 2m + 1 one cannot expect a theory of the regularity of a boundary
point similar to that for second order equations without the complementary
assumption of positivity of the fundamental solution.

Problem 8. Let n > 2m + 1 and let Py, (D) be a scalar elliptic operator
with real coefficients whose fundamental solution in R™ is positive. Prove
or disprove that the vertex of an arbitrary cone is regular with respect to
Py, (D).

In the case n = 2m + 1 Kozlov and Maz’ya [29] verified the regularity
of the vertex of a cone which can be explicitly represented in a Cartesian
coordinate system. In this paper the operator P, (D,) has real coefficients.
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It is unknown whether the restriction to the cone is important. This leads
to the following

Problem 9. Let n = 2m + 1 and let Pop(D.) be a scalar elliptic operator
with real coefficients. Prove or disprove that the vertex of an arbitrary cone
is reqular with respect to Poy,(D.).

5 Weighted positivity of (—A)™

Henceforth, {2 is an open subset of R" with boundary 9{2 and O is a point
of the closure 2.

Let B,(p) be the ball {x € R™ : | — p| < p}, where p € R* and let B, =
B,(0). We use the notation 9* = 9l°l/d¢ ... dz%» and by V, we mean
the gradient of order ¢, i.e. V, = {0%} with |a| = £. In the sequel ¢ is a
positive constant, which depends only on m and n, and w,—1 is the (n —1)-
dimensonal measure of 0Bj.

We shall deal with solutions of the Dirichlet problem

(~A)"u=f, ueH™). (24)

By I' we denote the fundamental solution of the operator (—A)™,

ylzPm=" for 2m < n,

I'(x) = D
(z) ~log ﬂ for 2m = n,
x

where D is a positive constant and
y =2 m = 1D)(n—2)(n—4)...(n —2m)w, 1
for n > 2m, and
4l = [2m_1(m — 1)!]2wn_1
for n = 2m.

Proposition 1. Let n > 2m and let

/Q w(@) (=AY u(@) (& - p)da > 0 (25)
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for all w € C§°(£2) and for at least one point p € 2. Then
n=2m,2m+1,2m+2 form > 2
and
n=4,56,7 form=2.

Proof. Assume that n > 2m + 3 for m > 2 and n > 8 for m = 2. Denote by
(r,w), r > 0, w € dB1(p), the spherical coordinates with center p, and by
G the image of {2 under the mapping = — (t,w), t = —logr. Since

r?Au =" (r d,) (T"72 (r 0r) u) + b,

where ¢, is the Beltrami operator on 9B (p), then

2
A:egt(af—(n—Q)at—{—éw):e%{<8t—n;2> —A},

where

Hence
m—1 n 2 2
2m Am — 2 2 49i] —al. 2
, H{(a 242 } (1)

Let u be a function in C§°(£2), which depends only on |z — p|. We set
w(t) = u(x). Clearly,

/ (=) " u(x)u(x)(x — p) dx :/ w(t)P(d/dt)w(t) dt, (28)
2

R1
where
m—1
PO = (D)™ wnor [J AN +2)(A —n+2+2))
7=0

m—1
= (=)™ w1 AA = n+2) [T A +2)(A = n — 2m + 2+ 2j).
j=1
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Let
2m—1
PO) = (1) wn A" + 3 apdb.
k=1
We have
m—1
1 1 1
o = (AP = 5 T T o o 19"
az = (A""P( ))|,\:0 2_n+j_1<2j n—2—2m+21>
Hence and by n > 2m + 3,
11 1 +m*1 n—2-2m
s = — — ———— —
T2 -2 m-2m & 2j(n-2-2m+2))
1 1 1
> - - >0

We choose a real-valued function n € C§°(1,2) normalized by

/ (o) do =1
Rl

and we set u(x) = n(et), where ¢ is so small that suppu C 2. The quadratic
form on the right hand side of (28) equals

[ (@ saati™ e + S a1 OO at
k=1
= —aze + O(£%) <0,
which contradicts the assumption (25). O
Now we prove the converse statement.
Proposition 2. Let I',(x) = I'(z — p), where p € 2. If

n=2m,2m+1,2m+2 for m > 2,
n=4,56,7 for m =2,
n=234,... for m=1,
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then for all uw € C§(12)

/ (=)™ u(x) - (@) (x - p) da
2

1y, [Viu(z
>2 Z/ﬂ p|2mk) I'(z — p) dex.

(In the case n = 2m the constant D in the definition of I' is greater than
| — p| for all x € suppu.)

(29)

Proof. We preserve the notation introduced in the proof of Proposition 1.
We note first that (29) becomes identity when m = 1. The subsequent proof
will be divided into four parts.

(i) The case n = 2m + 2. By (27),

p2m A — :i;[: (at —m42j— A1/2) :i;[: (at —m42j+ A1/2) :

where A = —6,, + m? and A'/? is defined by using spherical harmonics. By
setting £k = m — j in the second product, we rewrite the right-hand side as

Tj;[ol <8t—m+2j—A1/2)£[1(8t+m—2k+A1/2).

This can be represented in the form

m—1
o —m — AY?) (8, —m + A'/?
(0 -ma) om0 ]
where B; = AY/? + m — 2. Therefore
9 m—1
2MA™ = (af + 6, —2m E) E (67 — B?)
m—1
= (@ +o.) ]I (o7 - 57)
=1
+(=D)mme, Y. (=03 "I BE ... BE.
0<j<m—1

k1 <<k
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We extend u by zero outside {2 and introduce the function w defined by
w(t,w) = u(x). We write the left-hand side of (29) in the form ~(I; + I5),
where + is the constant in the definition of I,

(2m L) /at (~02)" 7 B2, .. B w - wdtdw,
0<j<m— 1
k1< <kj
and
L=(-1" / (92 +6.) H — BY)w - wdtdw.
G

Since the operators B; are symmetric, it follows that

. 2
m71[1 = Z /1 8t/ 8m7]71 Bk:1 .. Bklw) dwdt
R dB

0<j<m—1
~/8B1

k1<---<kj
Since u € C*°(12), we have w(t,w) = u(p) + O(e™*) as t — 400, and this
can be differentiated. Therefore, all terms with j < m — 1 are equal to zero
and we find

dw.

‘ 2

8m I By, .. By, w) (400, w)

0<j<m—1
k1<---<kj

I =m [(By ... Bp—1w) (+oo,w)|2dw
B,

:muQ(p)/ 1By ... B 11 dw.
By
By B; = (=6, + m?)Y/? + m — 2, we have
I = 4™ m(m — 1) Pwami1u®(p).
Since in the case n = 2m + 2
=22 m[(m — 1) Pwsmn,
we conclude that

I = (29) " (p). (30)
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We now wish to obtain the lower bound for I5. Let w denote the Fourier
transform of w with respect to ¢t. Then

m—1
L= / / (2 = 6,) [T (2 + B)#(A, w) BN, @) dAde,
0B, JR! i

Clearly,
B; > (m?—6,)Y% —m+2>2m™ (m? - 6,)'/2,
and
N4 BF > 4m™? (NP 41— 6.),

the operators being compared with respect to their quadratic forms. Thus

m 2m—2
(—) I > / A2 —6,) (A +1—8,)™ L\, w) - DO @) dAdw
2 OB xR?!

> ¢ (||l

2
Hm=1(G) + ||wa| ?f’“*l(G)) s

where H™~! is the Sobolev space. This is equivalent to the inequality

Iz>c/ |Vku ) dx,
10

— |x_p|n 1 _ p[n—2k

which along with (30) completes the proof for n = 2m + 2.

(ii) The case n = 2m+1. We shall treat this case by descent from n = 2m+2
ton =2m + 1. Let z = (z,s), where x € 2, s € R!, and let ¢ = (p,0),
where p € 2, 0 € R'. We introduce a cut-off function n € C§°(—2,2) which
satisfies 77(s) = 1 for |s] <1l and 0 <75 <1on R'. Let

Us(2) = u(x)n(es)

and let "™ denote the fundamental solution of (—A)™ in R™.
By integrating

(=)™ (2,q) = 8(z2 — q),

with respect to s € R! we have

POy = [ 10 ds (31)
Rl
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From part (i) of the present proof we obtain

/ (=A2)"Ue () Us () T (2 = q) dz
2 xR

1. —~  |ViU.(2)?
> U2 o 43
Z5 E(Q)+C/QXR1 }; |z — q|2(m+1=F) z

By letting ¢ — 0, we find

/ (=A™ () u(z) " (2 — q) dsdx
NxR!

1 —  [Viu(@)]?
> = —— — dsdz.
2 (p) + Cw/anl kz:; |Z — q|2(m+1—k) sdx

The result follows from (31).
(iii) The case m =2,n ="T7. By (27),

30wg / A?u( V[ (z — p)dx
= / (wt — Swy + b w) (wer + wy — 6w + ,w) dtdw.
a
Since w(t,w) = u(p) + O(e™t) as t — +oo, the last integral equals

/G (w?t — 5wt2 — 6wyw + 2wy bow + (dow)? — 6w6ww) dtdw + 15wsu? (p).

After integrating by parts we rewrite this in the form
/ (wtt + (8ow)? + 2(Vow)? + 6(V,w)? —|—wt) dtdw + 15wu® (p).
a

Using the variables (r,w), we obtain that the left-hand side exceeds

|z — pf? |z — pl

Since

A 52 ou Ou
2 _ 2 _ - —— e
[Vaul” = (Au)” = A((Vu)?) dx,0x, (8%‘ 51’;‘)’



138 Vladimir Maz’ya

it follows that

[ SR, [, [ SR,
Q 2 2

|z —pf® |z = pl lz—p|
which completes the proof.

(iv) The case n = 2m. By (27),

m—1
rmam =TT {@ = m+1+2))" = (m—1)? + 8.}

=0
m—1 m—1
= (8t—m+1+2j—51/2)H(@t—m+1+2j+51/2)7
=0 §=0
where £ = =8, + (m — 1)2. We introduce k = m — 1 — j in the second
product and obtain
m—1
rmAm = I (07 - 72),
7=0

where 7; = m — 1 — 25 + £'/2. Hence

/ (=)™ u(x) - u(x)[(x — p) da
0

m—1
:fy/ H (=07 + F)w - (L + t)w dtdw
G o

where ¢ = log D. Since w(t,w) = u(p) + O(e™") and

m—1

(-2 +72) =Y (o))" Y. FE..FE,
=0

k1<...<kj

j=0 J
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the right-hand side in (32) can be rewritten as

/ S T Fuy o Frywd T (L + 1) P, - Fryw) dtdw
G 0<j<m—1
k1 <--<kj

The second integral in the right-hand side equals

lim (m—7)
t——+oo
9B1(p) 0<j<m—1
k1 <---<kj

. 2
8[”_1_]]-'kl .. .fkjw‘ dw

= lim Fry - Fpu_s€ ? dw
t=+c /9B (p) k1<.§ (i .

m—1

and since (F,_qw) (t,w) = O(e™ ") the last expression is equal to

lim (Fo ... Fmow)’ dw = 2™ (m - 1)!)2 wn_1u*(p).
t—+4o0 9B, (p)

Hence

/ (—A)"u(z) - u(x)(z — p) dx
0

1 el 2
:—uz(p)+’y/(€+t) 3y (at ! j}'kl...}'kjw) dtduw.
2 a .
0<j<m—1
ki<---<kj
Since Fp_1 > ¢(—=6)"/? and F, > (=6 + 1)'/? for k < m — 1, the last
integral majorizes

c/G(ut) 3 (a;‘(—é)”/Qw) dtdw

1<p+v<m-—1

|Vku
| d
/ Og|x—p|z|x—p|2(m k) z,

which completes the proof.
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We introduce the bilinear form

avw) = [ Y Zovowa

for V and W in H™(2). Clearly, for u € C§°(£2), we have
Quary) = [ (~A)"u(@) - u@)I @ =)o

where I,(z) = I'(x—p) and p € £2. The quadratic form Q(u, wI,) is positive
by Proposition 2.

Let u be an arbitrary function in the space H™(£2)NC*°(£2). We approx-
imate u in the norm of H™(£2) by a sequence {u, } of functions in C§°(£2) in
such a way that u,(z) = u(x) in a neighbourhood of p. Then u,, — w in the
norm v + (Q(v,vI},))"/? and Proposition 2 implies the following assertion.

Corollary 1. Let n and m be the same as in Proposition 2. Then for all
ue H™(2)NC*®(N2) and p € 2

QU uly) > 2 Z /Q VLG iy S PP )

|x_p|2m k)

6 Regularity of a boundary point as a local property

Proposition 3. In the case m = 1 the regularity in the sense of Defini-
tion 1 is equivalent to Wiener’s reqularity.

Proof. Let O be regular in the Wiener sense and let u be the solution of (4)
with m = 1. We introduce the Newton potential u; with the density f and
we note that u; is smooth in a neighbourhood of 9f2. Since v = u — uy is
the H!(§2)-solution of the Dirichlet problem

—Av=0 on {2,

v=—uy ondf2,
it follows from Wiener’s regularity that u is continuous at O (see [6], Sec. 3).
Hence O is regular in the sense of Definition 1.

In order to prove the converse assertion consider the Dirichlet problem
~Aw=0 on{2, weHY(N),
w(z) = (2n) x> on IN.
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We show that w is continuous at O provided O is regular in the sense of
Definition 1. In fact, since the function
2(@) = w(z) — (2n) " [of?
satisfies
—Az=1 onf2, ze€H'(Q),

we have
z(w):/ G(z,s)ds,
2

where G is Green'’s function of the Dirichlet problem. Therefore,

z(x):/QG(Ls)h(s)ds—%/QG(Ls)(l—h(s))ds7

where h € C§°(£2), 0 < h<1and h=1 on a domain w, @ C 2.
The first integral tends to zero as x — 0 by the regularity assumption.
Hence

lim sup | 2(z)] < c/ﬂ _ B _o ((mes, (@ \ w))?/").

oo w e =2

Since mes,, (2 \ w) can be made arbitrarily small, z(z) — 0 as x — O. As
a result we obtain that z satisfies the definition of barrier (see [30], Ch. 4,
Sec. 2) and by Theorem 4.8 in [30] the regularity of O in the Wiener sense
follows. O

Lemma 1. Let n and m be the same as in Proposition 2. If O is regular in
the sense of Definition 1, then the solution w € H™(£2) of

(=A)"u= Y 9fa on,
{a:|aj<m}
with fo € La(2)NC(N2) and fo = 0 in a neighbourhood of O, satisfies
u(z) = 0asz — O. (34)

Proof. Let ¢ € C5°(£2). We represent u as the sum v+w, where w € H™(£2)
and

(=A™= Y 0%((fa)-

{a:Ja|<m}
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By the regularity of O the term v satisfies (34). We shall verify that w can
be made arbitrarily small by making the Lebesgue measure of the support
of 1 — ¢ sufficiently small. Let f, = 0 on Bs and let p € 2,|p| < §/2. By
definition of w and by Corollary 1,

Z/l—fa 0)* (wl) da

{a:|a|<m}
|ka
22 Z/ |x_p|2mk Iz —p) de.

The result follows. (|

m

Theorem 1. Let O be a regular point for the operator (—A)™ on 2 and

let 12 be a domain such that
2'N By, =02NBy,

for some p > 0. Then O is reqular for the operator (—A)™ on 2.

Proof. Let u € H™ (') satisfy (24) on ' with f € C5°(R2 ') and introduce
n(x) =n(x/p), n € Cg°(Bs), n =1 on Bsjp. Then 1,u € H™(£2) and

(=A)" (mpu) = npf +[(=A)",m]u on 0.

Since the commutator [(—A)™,n,] is a differential operator of order 2m —1,
with smooth coefficients supported by Bs, \ Bs,,/s, it follows that

(=4)" (npu) = Z 0%f, om 2,

{a: Ja|<m}

where fo € Lo(£2)NC*°(£2) and f, = 0 in a neighbourhood of O. Therefore,
(npu)(z) = o(1) as x tends to O by Lemma 1 and by the regularity of O
with respect to (—A)™ on (2. O

7 A local estimate

In the next lemma and henceforth we use the notation

M@= [ s

2ns,

where, as before, S, = {z: p < |z| < 2p}.
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Lemma 2. Let m and n be the same as in Proposition 2, u € Hm(Q) and
ATy =0 on 2N Bsy,. (35)
Then, for an arbitrary point p € B,
Q(Unpvunpfp) < ch(u),

where n,(x) = n(x/p), n € C5°(B2), n =1 on Bsjy. (In the case n = 2m,
here and in what follows we set D = 4p in the definition of the fundamental
solution I'.)

Proof. By definition of the quadratic form @,
Q (unp,unp - Q (u,un’ly)

/ 777pU o“ (Unp )_ [a ’T}P](unp )) dr, (36)

where [4, B] = AB — BA. Since « is m-harmonic on 2N By, it follows that
Q (wunifp) =0.
The right-hand side in (36) is majorized by
DI / CoIVjul? da,
=0 °

where (,(z) = ((z/p), ¢ € C§(S) and n{ = 7. By the well-known local
energy estimate

/ G|Vl de < ep™ / u? dx
17, Qns,
the result follows. O

Combining Corollary 1 and Lemma 2 we arrive at the following local
estimate.

Corollary 2. Let m and n be the same as in Proposition 2 and let us sup-
pose that w € H™(£2) satisfy (35). Then, for an arbitrary point p € 2N B,),

Viul — z <c U
w+ [ 3 Ple—p)de < cMy(w)  (37)

_ka
pim 17 p|( :
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8 Local estimates stated in terms of the m-harmonic
capacity

We say that a compact subset of the ball B, = {z: |z| < p} is m-small,
2m < n, if
cap,, (e, Ba,) < 16 "p" 2™,

In the case 2m > n only the empty subset of Fp will be called m-small.
Let w, denote the mean value of v on the ball B,, i.e.

U, = (mesan)fl/B u(x) dw.

P

We introduce the seminorm
m 1/2
. )
ullns, = (3 29 19005, )
Jj=1
Proposition 4 ([15], 10.1.2). Let e be a closed subset of the ball B,.
1) For all uw € C™ (Bp) with dist(supp u,e) > 0 the inequality
lullym,) < Clllulllm,s, (38)
s valid, where
C™% > cp~"cap,, (e, B,)

and ¢ depends only on m and n. o
2) If e is m-small and if the inequality (38) holds for all uw € C'™ (Bp) with
dist (suppu,e) > 0 then the best constant C' in (1) satisfies

C? <cp"cap (e, By)

The second assertion of this Proposition will not be used in the se-
quel and therefore will not be proved here. Its proof can be found in [15],
pp- 405-406. In order to check the first assertion we need the following aux-
iliary result.

Lemma 3. Let e be a compact set in By. There exists a constant ¢ depend-
ing on n and m and such that

cilcapm (e, Bs)

<inf {||1 — ]

?LI("}; TuE C* (By), dist (suppu,e) > 0} (39)
1

< ¢ cap,, (e, Ba).
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Proof. To obtain the left estimate we need the following well-known asser-
tion.

There exists a linear continuous mapping A: C*~1:! (Fl) — Ck-11 (Fg),
k=1,2,..., such that

(i) Av = on By;
(ii) if dist(suppv,e) > 0, then dist(supp Av,e) > 0;
(iii) the inequality

IV4(A0)| 3y < €l V50ll ) (40)
is valid with ¢ = 0,1,...,[ and ¢ independent of v.

Let v = A(1 — u) and let 1 denote a function in C§° (By) which is equal
to 1 in a neighbourhood of the ball B;. Then

cap (e, B2) < e[V 12, 5,y < cllolfpom s (41)

Now the left estimate in (39) follows from (40) and (41).

Next we derive the right estimate in (39). Let w € C§° (Bs), w =1 on
a neighbourhood of e.

Then

Wil ggm g,y < lIVmwllp, s, -
Minimizing the last norm we obtain
. 2 . 2
inf |11~ )} 5, < inf 0ll3 s, < ccap (e, By).
The proof is complete. O

Proof of the first assertion of Proposition 4. It suffices to consider only the
case d = 1 and then use a dilation.

1) Let
1 1/2
N=|— 2 .
(mesnBl /];1 (@) dx)

Since dist(supp u, e) > 0, it follows from Lemma 3 that

cap,, (e, By) < c||1 - ]\7_1U||i[,,l(B1 = eN72||full [, 5, +e |1 - N_1“||2Lz(31)

m,B1

)
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ie.
NZcap,, (e, B2) < ell[ull[, 5, +¢lIN = ull7, g, - (42)
Without loss of generality we assume that w; > 0. Then
vmesy By [N = | = [[ull, g,y — 1llp,p,) < llu—Tll,s,) -
Consequently,
1N — “HLQ(Bl) <IN —a| + [lu - ﬂ1||L2(Bl) < 2u - El”Lg(Bl) :
Hence, by (42) and the Poincaré inequality
lw="1llz,p, < cllVullp, g,
we obtain
cap (e, Ba) llull 7, g,y < elllelllZ, 5,
which completes the proof. [l

Lemma 4. Let m and n be as in Proposition 2 and let the function
u € H™(£2) satisfy A™w =0 on 2N By,. Then for all points p € 2N B,
there holds the estimate

A L Viu(z)|?
u?(p —|—/ |7 I'(x —p)dx
W+ Z —ppen [@=7)

Viu
Sfym /Q Z| n2k T,

ﬁS/’k:l

where

(p) = pPmeap,, (S, \ 2)  for n > 2m,
TP = cap,, (S, \ £2,Bs,)  for n =2m.

Proof. We combine Corollary 2 with the inequality

2 Viu(@)|®
w(z)de < /
/Qmsp Ym (P ons, ; P 2k

proved in Proposition 4. O
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We are in a position to obtain a growth estimate for the solution formu-
lated in terms of a Wiener type m-capacitary integral. Before stating the
result we note that the function ~,,(p) is measurable not only for n > 2m
when it is monotonous but also for n = 2m. In fact, one can easily show
that the function

(p/2,00) 5 1 cap,, (S, \ £2, Bay)

is continuous. Hence, being monotonous in p, the function of two variables
(p,7) — cap,, (S, \ £2, By,) satisfies the so-called Carathéodory conditions
which imply the measurability of ~,,(p) in the case n = 2m (see [31],
32], p. 152).

Theorem 2. Let m and n be as in Proposition 2 and let the function u €
H™(0) satisfy A™u =0 on 2N Bagr. Then, for all p € (0, R),

Vku
sup{|u(p)|2:p€QﬂBp}+/ Z || — 2k
QnB, 11 x|

< eMp(w)exp( ¢ / Rmr) ).

T

Proof. 1t is sufficient to assume that 2p < R, since in the opposite case the
result follows from Corollary 2. Denote the first and the second terms on
the left by ¢, and 9, respectively. From Lemma 3 it follows that for r < R

wasmem(w%—wT)s (Whar — e + 2r — 1)

Ym (T)

This along with the obvious inequality ~,,(r) < ¢ implies

Pr + wr S ceng’ym(T) ((/727“ + wQT) -

By setting r =27/R, j =1,... we arrive at the estimate

L
@a-tp +Ya-tg < C eXp<—cZVm(2_jR)> (PR + VR)-

=1

We choose ¢ so that

R
{<log, — <(+1
p
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in order to obtain
I
enttp < oxp( o0 X om@ 7R ) (o + ).
Jj=1
Now we notice that by Corollary 2
vr+Yr < cMRg.

It remains to use the inequality

R
d
va 2Bz e [ T -
o T

which follows from the subadditivity of the Riesz capacity. O

We formulate a sufficient condition for the regularity of O, which directly
follows from Theorem 2.

Corollary 3 ([17], [18]). Letn =2,3,... form =1,n <7 form = 2, and

n<2m+ 2 form > 2. If
dp
Ym(p) — =00
/0 p

Z'Ym@_j) =

=1

or, which is the same,

the point O is regular with respect to (—A)™.

Remark. One can see that the assertions and proofs of Theorems 1 and 2
can be extended to the following class of differential operators. Let

Lz, 0)u(x) = (=)™ Y~ 8%(aas()d”),
lee|=|Bl=m

where 2m < n and aqp are complex-valued measurable bounded functions,
and let @(z, p) be a complex-valued function defined for x and p in a neigh-
bourhood of the point O€ 92 and subject to the inequality

Via®(x,p)| < clo—pPm "
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for k =0,1,...,m. The operator L satisfies the inequality

R [ L00)ute) - uaate. ) do 2 € (fu(p)?
2 ).

where w is an arbitrary function in C"(2), supported by a neighbourhood
of O, p is an arbitrary point of {2 situated in this neighbourhood and C is
a positive constant independent of u and p. The left-hand side in (45) is
understood as

§R/ > aa,e( )9 u(x)0* (u(x)d(z, p)) dx. (46)

le|=|8l=

(45)

If, in particular, the operator L has constant coefficients and & is its
fundamental solution, then the positivity of (46) follows from the inequality

L(i€) ——
%/n / TG  ©fmdedn >0

valid for all non-zero f € C§°(R™). The last inequality was studied recently
by S. Eilertsen [33].

9 A pointwise estimate for a function,
m-harmonic in 2\ B,

Theorem 3. Letm and n be the same as in Proposition 2 and let u € H(£2)
satisfy

AT™u=0 on 2\ B,.

Then for an arbitrary p € 2\ B,,

w)] < ¢ (M, ()2 (ﬁ)m exp (e / 7 ) ). an

T

Proof. Let w denote the Kelvin transform of u, i.e. the function

wln) =l (1)
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defined on the image I£2 of {2 under the inversion  — y = x|x| 2. It is well
known that

s o ) - )

(A simple way to check this formula is to introduce the variables (t,w),
t =logr~!, and to use (27).) Consequently,

| vyt = [ ww)ara@ s (43)
10

2

and therefore w € H™(I1£2) and uw € H™(£2) simultaneously.

By Corollary 2,

9 1/2 e dr
lw(q)| < C(p”/ w* (y) dy) eXP<—C/ Ym (T) —)
B2/p\B1/l) 1/“1‘ T

for all ¢ € 1£2N By ,, which is equivalent to the inequality

¢ y 1/2
|q|2m—n ” (_2>‘ S c<pn/ |y|2(2m—’ﬂ)u2 (_2> dy)
|l]| Bs;,\Bi/, |?/|
IR
xexpl—c [ ym(T)—].
|7l T
By putting p = ¢|¢|=2, = = y|y|=? we complete the proof. O

By (48) and Theorem 9.3.2/1 in [15] mentioned in the beginning of Sec. 2,
one can obtain that cap,,(IK, By/,) is equivalent to p*@m=r)cap, (K, Ba,)
for K C S,. Hence the function

Y (P) = p2mincapm(5p \ 142, B4p)
satisfies the equivalence relation
T (p) ~ p" 2 cap,, (S1/, \ 2, Byy,),
which, together with the easily checked property of the capacity

Capm(SP \ ‘Qa B4P) ~ Capm(SP \ Q)v



On Wiener’s type regularity of a boundary point 151

valid for n > 2m (see [15], Proposition 9.1.1/3), implies

1/p dr || dr
RN ENCES
/1/p T P T

Here |p| > p and ¢, ¢o are positive constants depending on n and m.
Furthermore, by definition of w,

My, (w) ~ p" 72" My (u)
and the result follows from (44) applied to w.

By a standard argument Theorems 2 and 3 yield the following variant
of the Phragmén-Lindeldf principle.

Corollary 4. Let m and n be the same as in Proposition 2 and let
Cu € H™(R2) for all ( € C*(R"™), ( =0 near O. If

A™u =0 on 2N By,

then either u € H(£2) and

1
d
limsup sup |u(x)|exp<c/ ym(T)—T> < 00 (49)
p—0 B,N§2 P T
or
1 dr
lim inf p”2mMp(u)exp<—c/ m (T) —> > 0. (50)
p—0 P T

10 Estimates for the Green function

Let G, be the Green function of the Dirichlet problem for (—A)™, i.e. the
solution of the equation

(=42)" Gz, y) =6(x —y), y €L,
with zero Dirichlet data understood in the sense of the space H™.

Theorem 4. Letn =5,6,7 form =2 andn =2m+1, 2m+ 2 for m > 2.
There exists a constant ¢, which depends only on m, such that

G2, y) =z =y < edi™ " if o -yl < dy,
Gz, y) Scle =y if o —y| > dy,
where d,, = dist(y,912).
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Proof. Let 2, ={x € 2: |[z—y| <dy}and af2y ={x € 2: |[x—y| < ady}.
We introduce the cut-off function n € C§°[0,1) equal to 1 on the segment
[0,1/2]. Put

H(z,y) = Gm(z,y) —n (%) I'(z —y).

Clearly, the function = — (—A,)™H (z,y) is supported by 2, \ 2712, and
the inequality

|AZH(z,y)| < cd,™
holds.
By Corollary 2 applied to the function z — H(z,y), we have

H(p.y)® <2 /Q (=A™ H(z,y) - H(z,y)[(x - p) da.

Therefore,

sup H(p,y)? <2 sup |H(z,y)| sup / AT H (2, 9)| T — p)dr, (51)

PELy, TEL pe282y J 02,
and hence,
sup |H(p,y)| < ed,™ sup / I'(x—p)dx < cdflm*". (52)
pe222, pe222, J o,

Since A*H(p,y) = 0 for p & §2,, we obtain from (52) and Corollary 4,
where O is replaced by p, that for p € 242,

d n—2m ) B
IH(p,y)ISC< ] ) sup |H(z.y)| < elp— g™ ™.
|p_y| ac€2ﬂy

The result follows. O

Theorem just proved along with Corollary 2 yields

Corollary 5. Let m and n be the same as in Theorem 4. The Green func-
tion G, satisfies

lyl d
C T
(G (,9)] < Wexp(—c [ o —)

for 2]z| <yl
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We conclude with the following analogue of Theorem 4 in the case
n = 2m.

Theorem 5. Let n = 2m and let 2 be a domain with diameter D. Let also

F(x—y)=710g|x_y|~

Then

D .
IGm(w—y)—F(ﬂf—y)lScllogd—+02 if lx =yl <dy,
Yy

D
|G (2, y)| < c3log T ‘e if |x—y|>dy.
y
Proof. Proceeding in the same way as in the proof of Theorem 4 we arrive
t (51). Therefore,

. D
sup |H(p,y)] Scdgzm sup / I'(x — p)dx < ¢1log — + co.
PE22, pe22, J @2, dy

Hence and by Corollary 2 we obtain for p & (2,

D
|H(p’y)|§c sup |H(x7y)| §C<C110gd— +CQ>.
€242, y

Since G, (p,y) = H(p,y) for p & 212, the result follows. O
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