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WEIGHTS, ONE-SIDED OPERATORS,
SINGULAR INTEGRALS AND ERGODIC THEOREMS

FrANCISCO JAVIER MARTIN-REYES

1. INTRODUCTION

The aim of these lectures is to study weighted inequalities for one-sided
operators. By a one-sided operator in the real line we mean an operator
T acting on measurable functions such that for all measurable functions f
the value of T'f(z) depends only on the values of f in [z,00) or in (—o0, z].
Examples of these operators are the following:

(1) The Hardy operator

Tf /f and its adjoint T f(x /f

(2) The Riemann-Liouville and the Weyl integral operators defined, for

0<a<l,by
I, f(z)= / %ds, and Iif(:r):/%ds.

(For these operators, one usually assumes that the support of f is
contained in [0, 00).)
(3) The one-sided Hardy-Littlewood maximal operators

M~ f(x) = sup
c<z T

/ I
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104 F.J. MARTIN REYES

(4) The one-sided fractional maximal operators defined, for 0 < 8 < 1,
by

M; f(a) = s / ) and M fw) = sup / 7l

c<x

We are interested in obtaining characterizations of the pairs of nonneg-
ative measurable functions (u,v) such that the one-sided operators apply
L?(v) into L?(u) or in weak-L7(u). In order to study these questions, it is
interesting to begin with studying the operator M ™.

Which are the good weights for M7 First, we remember the correspond-
ing results for the two-sided Hardy-Littlewood maximal operator defined by

z+h

Mf(@) = swp f / i

B. Muckenhoupt proved [Mu] that the following theorems hold:

Theorem A [Mu]. Let u and v be nonnegative measurable functions and
let 1 < p < 0o. The following statements are equivalent:

(a) There exists a constant C > 0 such that for all A > 0 and every
f € Lr(v)
C o0
P
<+ / |[flPo.

(b) (u,v) satisfies A,, i.e.,there exists a nonnegative real number A such
that

{2:M f(2) >}

b
1 1
sup /u /vil/(pfl) =A if p>1,
achb \b—a b—a

a a
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Theorem B [Mu]. Let w be a nonnegative measurable function and let
1 < p < . The following statements are equivalent:

(a) There exists a constant C' > 0 such that for every f € LP(w)

(b) w, i.e. the pair (w,w), satisfies A,.

Therefore, if we restrict ourselves to the single weight case, u = v = w,
and keep in mind that Mt f < M f, it is clear that if w € A, then we have

(L.1) [ wsg [ure ez,

{z: Mt f(z)>\}

and
(1.2) /(M+f)”w < C/|f|pw if p>1.

The question is: are there more weights w such that the above inequalities
hold? If we connect this problem with ergodic theory we see easily that the
answer is affirmative and that it has been known since long time ago.

Observe that M is the ergodic maximal operator associated to the semi-
group of operators {1} : t > 0} given by T, f(z) = f(x + t), i.e.,

h
1
MY f(@) = sup 7 / T3 ()]t

Let us consider the real line with the measure w(z)dx. The Dunford-
Schwartz theorem states (see [Kr] and Section 5 in this paper), roughly
speaking, that if

1T fllerwy S NFllrew)  and (| Tefllp=w) < [1fllp(w)
for all f, then

(1.3) / w < %/|f|w for all f € L*(w)

{z: M+ f(z)>\}
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and
(1.4) /(M+f)pw§0p/|f|pw if p>1and feLP(w)

hold with constants C; = 1 and C, = p/(p — 1). But what do || T% ]| £1(w)
S fllzrwy and ([T fll 2o (w) < [1fll 2o (w) mean? First, observe that if w is
positive then the inequality for the L*>°-norm is always verified. Second, the
inequality for the L!-norm is equivalent to

/|f(sc)|w(x—t)dx§/|f(x)|w(x)dx for all t > 0 and all f € L'(w),

which holds if w is increasing. Therefore we see that if w is positive and
increasing then the Dunford-Schwartz theorem implies that w is a good
weight for M, more precisely, inequalities (1.3) and (1.4) hold. Since
w(x) = e” is increasing but it is not a weight in the A, classes we see that
certainly the classes of functions w for which inequalities (1.3) and (1.4)
hold are wider than the Ap-classes.

Now the problem is to find a characterization of the weights for which
the inequalities (1.3) and (1.4) hold. The same problems can be studied
for the one-sided Hardy-Littlewood maximal function associated to a Borel

measure g which is finite on bounded intervals. For such a measure, we
define

M f(w) = sup o / Fldi, M () = / 1
C I] [fL‘ c

where the quotients are understood as zero if u(c,z] = 0 or p[z,c) = 0. If

p is the Lebesgue measure then M, = M™*; the weights for this operator

were studied by E. Sawyer [Sa]. If u is a measure equivalent to the Lebesgue

measure, the weights for M;f were studied in [MOT]. The results of [Sa] and

[MOT] were generalized in [An] where the following theorems were obtained:

Theorem C [An,Sa,MOT]. Let u be a Borel measure on R which is finite
on bounded intervals. Let u and v be nonnegative measurable functions. If
1 < p < o then the following statements are equivalent:

(a) There exists a constant C > 0 such that for all A > 0 and every

f € LP(vdp)
C o0
/ wdp < ﬁ/lfl”vdu-

{z:M,f f(z)>2}
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(b) (u,v) satisfies Af (), i.e., there exists a nonnegative real number A
such that
p—1

1 1
sup — /udu —/v_l/”_ldu =A if p>1,
a<b<c N(avc)( ] :U’(avc)[b )

M, u(r) < Av(r) p-ae. if p=1.
The constants C' and A depend only on each one.
Theorem D [An,Sa,MOT]. Let u be a Borel measure on R which is finite

on bounded intervals. Let w be a nonnegative measurable function and let
1 < p < . Then the following statements are equivalent:

(a) There exists a constant C' > 0 such that for every f € LP(wdpu)

7 (M f)Pwdp < C 7| FlPwdp.

(b) w, i.e. the pair (w,w), satisfies A} (u).

Remarks.

(1) Analogous results are obtained for M, changing Al (1) by the ob-
vious A (p).

(2) If p is the Lebesgue measure then we shall simply write A and A,
instead of Af () and A7 ().

(3) Weighted inequalities for M T in the setting of LP>¢ and Orlicz spaces
have been studied in [O4], [O5] and [OP].

The purpose of the next section is to present recent results [MT5] about
weighted norm inequalities for general one-sided maximal operators which
include the operators mentioned at the beginning of this introduction and
others as the maximal operator associated to Cesaro averages of order «,
0 < a <1, which is defined by

_ L[ )
Motaf(l’)—iglz (c—x)a/(c_s)l—a ds.

In order to study these general one-sided maximal operators we shall need
some important properties of the weights belonging to the A;(,u) classes;
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their proofs will be given in Section 3. The following Section 4 is devoted to
the content of [AFM], i.e., to the study of weighted inequalities for singular
integrals associated to Calderén-Zygmund kernels with support in (—o0, 0).
Finally, in Section 5 we go back to ergodic theory and obtain a general
dominated ergodic theorem [MT1] using the theory of one-sided weights.

Throughout the paper, C' will denote a constant which may change from
one line to another. If p is a number between 1 and oo, then p’ will denote
its conjugate exponent. For any measurable function g and any measurable
set E, g(E) and |E| will stand for the integral of g over E and the Lebesgue
measure of E, respectively. The weights u, v and w will be assumed positive
and finite to avoid technical difficulties.

2. GENERAL ONE-SIDED MAXIMAL OPERATORS
I. Definitions and examples.

Definition 2.1. Let f be a locally integrable function defined on R, and let
a, 3 be two real numbers such that 0 < 8 < a < 1. We define the maximal
operators

L[ )
Miﬁf(x):sup )ﬁ/( ds,

c—s)l—a

and

PN S 1)
N f(2) p(c_x)ﬁ/( —— ds.

Our aim is to study the good weights for these operators.

Examples.

(1) If @ = B8 = 1 the operator M:[ﬁ is the one-sided Hardy-Littlewood
maximal operator. The pairs of weights for which this operator is
of weak or strong type are well known [Sa, MOT].

(2) If=1and 0 < # <1 then M ; is the fractional one-sided maxi-
mal operator. The pairs of Welghts (u,v) for which this operator is
bounded from LP(vdz) to Li(udz), 1 < p < ¢ < oo, were charac-
terized by Andersen and Sawyer in [AS] and by Martin-Reyes and
de la Torre in [MT3].

(3) If « = B # 1, then the operator M:B is the maximal operator
associated to the Cesaro averages C\ and the weights have not been
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studied. For Lebesgue measure it is known [JT] that it maps L? into
itself if p > 1/a. In the limit case p = 1/« it maps LP! into LP>°.
In other words, it is of restricted weak type (1/a,1/a).

(4) For the operator N:ZB we have that when f = 0 < a < 1,

N;'ﬁ = [ f(s)(s — x)* ds. This is the Weyl fractional integral

studied in [AS] (see also [KG] and [LT]), while if 3 is positive the
operator is equivalent to the fractional one-sided maximal operator

Mg, 5 studied in [AS] and [MT3].

(5) f =1, 8 =0 then M;ﬁf(x) = [ f(s)ds which is the adjoint of
the Hardy operator. The weights fgr the Hardy operator have been

studied in many papers. For example, we can cite here [Br|, [AM]
and the book by B. Opic and A. Kufner [OK].

Of course one could consider also the operators M . and N . defined
by

and

_ 1 [ f(s
Na,ﬁf(f) = igg (SC — C)B / (x |—(8))1|_0¢ ds.

Therefore, if f is positive and has support in RT, My of(x) = | f(s)ds for

C—s

x> 0.

We are going to study the pairs of weights for which the operators M ;‘ 5

and Not 5 are of weak type or restricted weak type. We shall also obtain the
strong type characterization in the case of “equal” weights. In this way we
obtain unified results for the examples considered above. A generalization
of these results in the setting of LP'? spaces will appear in a forthcoming
paper by Maria Dolores Sarrién.

II. Weak type inequalities. In this subsection we give the characteriza-
tion of the pairs of weights for which the above operators Miﬁ and Niﬁ
are of weak type.
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Theorem 2.2 [MT5]. Let 0 < f<a<l,a>0andl1<p<gq. Ifp<gq
ora — 3 =1/p—1/q then the following statements are equivalent:

(1) There exists a constant C' such that

e MF,7w) > ap < one (| |f|Pv)q/p

for all A > 0 and all f € L?(v).

(2) The pair (u,v) satisfies A;q’aﬁ, i.e., there exists a constant C such
that
b 1/q c ) ’( ) 1/p
v P (s
/“ /mds <Cle—a)’,
a b

for all numbers a < b < ¢, where, from now on, if p = 1 then
c 1/Pl

<f 1P (5) (¢ — s) (e D ds) is understood as the essential
b

supremum of {v=1(s)(c —s)*"t:s € (bc)} .

Theorem 2.3 [MT5]. Let 0< f<a<1l,0<aandl1<p<gq. Ifp<gq
or1/p—1/q =« — [ then the following statements are equivalent:

(1) There exists a constant C' such that

e N1 > ap < oo Ifl”v>q/p

for all A > 0 and all f € L?(v).
(2) The pair (u,v) satisfies B

pd.0 i.e., there exists a constant C' such
that

b 1/q c 1o 1/1”
v P (s
a b

for all numbers a < b < c.

We shall only prove Theorem 2.2 in the case p=¢ >1land 0 < a =3
<1.

Proof of Theorem 2.2 for p=q > 1 and a = 3. The proof of (1) = (2) is
standard. For a < b < ¢ fixed, we consider the function

’

g(s) =07 (s)(c = )P, 0 (s)
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and the number

c 1y
P / v g
b

(c — 5)(1*‘1)13'
It is easy to see that
(a,b) C {x: M;ag(x) > A}

Then, applying (1), A follows .

p,p,a,x

The implication (2) = (1) follows from the following proposition:

Proposition 2.4 [MT5]. Let 0 < a < 1 and 1 < p. If the pair (u,v)
satisfies Af . . then there exists C > 0 such that for every measurable
function f and all real numbers a the following inequality holds:

M, f(a) < C (MF(|fPoa) " (a),

where M} stands for the one-sided Hardy-Littlewood maximal function
associated to the Borel measure u(zx)dz.

Proof of Proposition 2.4. We may assume that f is nonnegative. Let b > a.
We define a sequence xg =b > x1 > x5 > --- > a by the identity

Tit1 x; x;
1
u = U= — u.
2
a Ti41 a

On each interval (z;11,z;) we have:

x{ (b_f(s))l_a ds :wi o i(gl_a (il__;ya .
- <i:7;:22>1a 7 %”””(S)v”f’(s)ds

Tit1
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(we have used that the function s — ((z; — s)/(b—s))' ™ is decreasing)

1—a T; 1/p z; // ( ) l/p’
Ti — Tit2 v P /P(s
< [ 2 P -\
- ( b — 1'7;+2 > ('/ f v) (’/ (l‘i — S)(lfa)p' ds)

i+l it+1
l—o T; 1/1’ T _1/p
T, —I; @
<o(352) o) (/ f ) (/ )
i+1 a

< OGE I (g (o) )

Summing up in 7, we get

b
[ S as<c o) @y 7(,,“ S

(b—s)i= — Tiya)

= 7ira)! / ds
i) 0% [ Gt

b
<C (Mj(fpvu_l))l/p (a) / (b—ﬁ ds

a

<O (o) @Y =

a

= (M} (frou )" (@) (b — a)°.

Proof of (2) = (1). Assume again that f is a nonnegative function. By
Proposition 2.4 we have that the set {z : M f(z) > A} is contained in
{z : MF(fPou=t)(xz) > CAP}. Therefore, since M. is of weak type (1,1)
with respect to the measure u(z) dz,

[ v ] =g

{z: Ma o f(z)>N\} {z:Mj(vau—l)(z)>C)\P}
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III. Restricted weak type inequalities. It is known that if 0 < «
< 1 then the operator MT_ is not of weak type (p,p) with respect to

the Lebesgue measure when p = 1/a, but it is of restricted weak type. In
the following theorem we will characterize restricted weak type.

Theorem 2.5 [MT5]. Let 0 < f<a<l,a>0and1<p<gq Ifp<q
orl/p—1/q = a — [ then the following statements are equivalent:

(1) Mi,,@ is of restricted weak type, i.e., there exists C' such that
c a/p
[ o= (5 ))
{$1M{t/,XE(I)>>\}

for all A > 0 and all measurable sets E.
(2) There exists C' such that

[(c—s)*"tds

E
<
c—ap  =°¢

((B)V
b
(f s

for all numbers a < b < ¢ and all measurable sets E C (b, ¢).

Proof of Theorem 2.5 in the case p = q and a = 3. We shall begin proving
(1)= (2). Ifa<b<c,EC (bc)and A = (c—a)™ [ xe(s)(c— s)* "' ds,
b

then it is easy to see that
(a,0) C {z: M xp(z) > A,
and then, by (1),

=) fo

b
C
a/uS V/XEU: (f(c—s)afds>p.

E

For the converse, we take any given interval (a,b) and define a sequence
{z\} as in the proof of Proposition 2.4. It follows that if E is a measurable
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set and E; = EN (xi+1,%;), then

T

/ _xm(8) oo (BT o / 1
b—s)t= = \ b—wito (x; — s)t—
E

Tit1 i

If we sum up in ¢ as in Proposition 2.4, we get
_iny 1
Mo xe(a) < C (MF (veou™)' 7 (a),
and restricted weak type follows as in Theorem (2.2).

IV. Strong type inequalities: the case of equal weights. If the
weights v and v satisfy that v9 = «P then the condition A:q o,p 18 suffi-
cient for the strong type inequality.

Theorem 2.6 [MT5]. Let 0 < f <a<1l,a>0andl1 <p<gq If
1/p—1/g=a—p andv = uP/? then the following statements are equivalent:

(1) There exists a constant C' such that

(J ey o) < (from) ™

for all f € L?(v).

: isfios A
(2) The pair (u,v) satisfies A7 , 5.

Proof of the case p = q and o = (3. In this proof we shall write w = u = v.
In order to prove the theorem, we need to consider the maximal operators
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M}, associated to the measure y14 = (d—5)*7"X(—c0,q)(5) ds given by a real
number d. Observe that we have

(2.7) My fla) < MJ o f(w).

In order to see this, we consider ¢ < d with x < ¢. Then

/ O/ /C(If(S)I (=92

J (d— s)t—= J c—s)l=o (d—s)l—=
(C—J}) + . + r / 1 5
- (d_x)l—aMa7af( ) S Ma,af( )/ (d—S)l_D‘ d )

T

which implies inequality (2.7). Therefore, if M, is of weak type (p, p) with
respect to the measure w(z) dz, or equivalently, if w satisfies A;p@,a then
the maximal operators M :[d are of weak type (p,p) with the same constant,

i.e., there exists C such that
s M A < < 4
wife: Mff@) >0 < o [ IfiPw,

for all d, all positive A and all measurable functions f. Now, by Theorem C,
we have that w(s)(d — s)'™* satisfies Af(uqg) with the same
A;‘(,ud)—constant, i.e., there exists C' > 0 such that

b 1/p c - 1/p
w TP (s)
su w(s)ds ———ds
a<b<Ic)§d / (5) b/(d—s)(lo‘)p
c 1
2. < -_—
(2.8) _C/(d_s)liads

for all real numbers d. Thus, we have seen that if w satisfies AT

then (2.8) holds. But the converse is also true, since if we put ¢ = d in
(2.8) then we obtain Af . and, therefore, we have that w € Af
if and only if w(s)(d — s)'=* € Af(pa) with the same A (j4)-constant.
Now, since A; (k) = A;‘_s(ud) for some ¢ > 0 depending only on the
Af (puq)-constant (see [MOT] and Section 3 in this paper), we get that if
w e Al . then w € A;lapfs’ma, and by Theorem 2.2 the operator
M;a maps LP~¢(w) into weak-LP~¢(w). Now, by interpolation, we obtain
that M applies LP(w) into L? (w). This proves (2) => (1). The converse
implication follows from Theorem 2.2.
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3. SOME PROPERTIES OF THE ONE-SIDED WEIGHTS

Let u be a continuous Borel measure finite on compact sets and
1 < p < oo. The implication w € Af(n) = w € A} _(n) for some
e > 0 has been a key fact in the proof of the last theorem of Section 2.
This section is aimed to provide a proof of this property based on the cor-
responding proof in [M] and on ideas of A. de la Torre. It is worth noting
that the result does not hold for all noncontinuous measures; an example
will be given at the end of this section.

Before stating and proving the results, it is convenient to consider the case
in which p is the Lebesgue measure and recall how the above implication
is normally proved in the case of A, classes. First, it is seen that v € A,
implies that v satisfies the following Reverse Holder Inequality:

b 1/(146)

b

1 146 C /
<

b—a/v “b—a v

a a

for some positive constants C' and ¢ independent of the numbers a and b.
Then, as a corollary, v € A, and the Reverse Holder Inequality give easily
that v € Ap,_.. But now, the Reverse Holder Inequality does not hold for
Al classes (consider, for instance, v(x) = exp ). However, a substitute has
been found in [M]: if v € A} then there exist positive constants C' and ¢
such that for all @ and b

b b
/ o1+ < C(M™ (0X (0 (1) / 2,

which implies
M~ (0 % (40))(B) < C(M ™ (vX(a)) (0) .

This is what we have called Weak Reverse Holder Inequality. This condition
together with v € A} gives v € Af _ in [M] but not so easily as in the
classical case of Muckenhoupt’s classes. After proving Af = A} _ the
following questions remained open: It is known that the Reverse Holder
Inequality is equivalent to the fact that the weight is in some A, class. Is
this true for the Weak Reverse Holder Inequality and A;r classes? Moreover,
is there a concept of AT weights, equivalent to the Weak Reverse Holder

Inequality, analogous to the concept of A,, weights? The answers to these
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questions are affirmative. This has been obtained by L. Pick, A. de la Torre
and the author [MPT].

Our first result in this section establishes that, for continuous measures
1, w satisfies the Weak Reverse Holder Inequality if and only if w belongs
to At (u) for some p; the third one is the required implication, while the
fourth one introduces the AL (1) condition which will be useful in the next
section. At the end of the section we give an example which proves that the
implication A;(u) = A;‘_E(,u) does not hold for all Borel measures p.

Lemma 3.1 [MPT]. Let u be a continuous Borel measure on the real
line, finite on bounded intervals. Let w be a positive measurable function
which is locally integrable with respect to p. The following statements are
equivalent:

(a) The weight w satisfies A (u) for some p > 1.

(b) There exist positive constants C and § such that

b b

1 1 C B
u(a,b) /w B 1(a,b) /“’d“ (M7 (WX (a,) (b))

a a

)

for all numbers a < b such that u(a,b) > 0.

(¢) There exist positive constants C' and ¢ such that

M 4 (0 X (a ) (b) < C (M;:(wX(mb))(b))&

for all numbers a < b.

(d) There exists p > 1 such that w™" satisfies A7 (w dp).

Proof. We begin with proving (a)=-(b). We may assume that 1 < p and w
is bounded above. We first claim that for all s with 0 < s < 1 there exists
C' such that

b 1/8

1 17
du < C Sd
u(a,b>/“’ = u(b,c>/“’ a
b

a

for all numbers a < b < ¢ such that pu(a,b) = u(b,c) > 0.
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Proof of the claim. Let r > 1. Applying Holder’s inequality with expo-
nents r and 7' = r/(r — 1) we obtain

c r/s
1
1= - ws/rw—s/rd
u(b,c>/ 8
b
c 1/s c r/sr'
1 / 1 o
w® dp /w T dp
(b, ) / (b, ) /

For fixed s, 0 < s < 1, we choose r such that r/(sr') = p — 1, ie,
r=1+s(p—1). Then, since w satisfies AF (1), we have

c 1/s b -1

1
1<C /wsd /w a,c),
0.0 / 1t (a,c)

a

which, taking into account that w(a,c) = 2u(a,b), is the claim that we
wished to prove.

Now we shall use this inequality to prove that (b) holds. Let us fix the
interval I = (a,b), and let A = M (wxy)(b). For A > A we consider the set
Oy ={z € I: M, (wxs)(x) > 2A}. Then, since the measure is continuous,
we have that there exists a countable disjoint family of intervals I; = (a;, b;)
contained in I such that O, = U;I; and

/

Observe that

b

(L) = / wdp < / wdp < Aplaib) < Milas,b).
I; a;

Thus 2u(I;) < p(a;,b) and therefore for each I; there exists I;” = (b;,¢;)
contained in I such that u(I;) = u(I;7) (here we are also using the continuity
of the measure). Then

f wdp < Z/wdu =2)\ ) (i) < 22u(0,).
7 1; 7

{zel:w(z)>2)}
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Now, observe that by the claim we have that Ox C {z : M (w*xr)(z)
> CMN°}. Continuing our computation, we get, by the weak type (1,1)
inequality of M, with respect to u, that

wdp < CN8 / w® d.
{zel:w(z)>2)\} {zEI:w‘(z)>C)\“‘}

Multiplying by A*~! and integrating from A to oo we obtain

//\5‘1 / wdpd\ < C/A5_S / w* dpdX.
A

{zel:w(z)>2\} A {zel:w*(z)>CX*}
The left hand-side is equal to
1 w\?® s
i “’((5) —A>dﬂv
{zEI:w(z)>2A}
which is greater than or equal to
1 A8
() 27(wa“r‘%m—?/wd
T T

The right hand-side of (x) is less than or equal to

S5—s+1
c/ /xf *d\dp (gf )/w5+1du.

1

If we insert this inequality and (xx) into (x), we get the desired inequality for

§ small enough. In the last step we have used that [w!™® du < oo (since
T
w is bounded above).

Now, observe that (b)=(c) is immediate. In order to finish the proof
of the lemma, it will suffice to establish (c¢)=-(d), since (d)=-(a) is proved
as (a)=(d) changing the orientation of the real line and the roles of the
measures p and w dpu.

c -1y
Leta<b<candz € (bc). If A = (fwd,u) [ w' % dp then for every
€ (b, c) we have ’ ’
A<C (M;du(w5X(a,z>)) (z)

< C (M (wX(an))’ () < C (M, (wX(ae) (2).
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Therefore, since M, is of weak type (1,1) with respect to the measure p,

(&

p(b,e) < pl{x : M7 (wX(a0)(x) = CAVY) < % /U’d/‘

a

which means that w™" satisfies A7 (w dp) with p = (14 6)/6.

The following corollary is an immediate consequence of the implication
(a)=(b) of Lemma 3.1.

Corollary 3.2 [M]. Let u be a continuous Borel measure on the real line,
finite on bounded intervals. If w satisfies Aj (1) then there exist & > 0 and
C' > 0 such that for every bounded interval (a,b)

M7 (0 X () (0) < C (M (wy(ap) ()

Theorem 3.3 [M]. Let 1 be a continuous Borel measure on the real line,
finite on bounded intervals. If 1 < p < oo and w satisfies Aj (1) then there

exists ¢ > 0 such that w satisfies A}__(u).

Proof of Theorem 3.3. First, we observe that the A;(u)—condition implies

that o = w="/ (=1 islocally integrable (we are assuming that w is positive).
Second, we note that w satisfies A; (u) if and only if o satisfies A (). Then,

by the analogue of the above corollary for A (u)-classes, we have that there
exist § > 0 and C' > 0 such that for every bounded interval (b, c)

MF (0 ) (B) < C (MF(ox ) (1)

Now we will show that w satisfies A;‘_s(u) where p—e =s = (p+6)/(1 +9).

Fix a < b < ¢. Since ¢ is locally integrable it follows from the above
inequality that the same holds for o'*%. Therefore, there exists a finite
decreasing sequence ro =b > x1 > --- > ry > a = ry41 such that

C C

/01+5du:2k/01+5d,u ifk=0,...,N

Ty b

and

TN c

/01+5 dp < 2N/01+5 dp.

a b
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From this it follows easily that for every £ =0,..., N,

/ 0_1+§ d,U/ < 2k+1 /0_1+5 d,U/,
Tr41 b

which will be useful later on. On the other hand,

C

A 1
o odu | = — / wdp | —— / o dp
/ 2 e

b - Th41 Tl

C

w dj

S
=
=
ug =
&

N
<> 1 /w(y) (M, (0" X (y,0) () )

2ks
k=0 Tht1
N C Tk "
< oks w(y) (M:(Ux(zkH,C))(y))p dﬂ(y)-
k=0

Since w satisfies A;‘ (1) we know by Theorem C that M:‘ applies LP(w du)
into weak-LP(w dp). Then, by Marcinkiewicz’s interpolation theorem, M j
applies L+ (wdpu) into LPT® (w dyu). Thus

b

c s N c
1 1
/wd,u /UH‘Sd,u SC’Z% / ot dp
k=0

n(a, c)
a b Tht1
N 2k+1 c c
SCZZT/01+§dH§C/Ul+5dM< 00,
k=0 b b

and therefore the proof of the theorem is finished.

Theorem 3.4 [MPT]. Let 1 < p < co. If w € Af(u) then w satisfies
AL (n), i.e., there exist positive real numbers C' and 6 such that

Lo co(HE)
fwdu — \u(bo)

for all numbers a < b < ¢ and all subsets E C (a,b).
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Proof. Tt follows from Lemma 3.1 that there exists r > 1 such that w=!
satisfies A7 (w dp). Then, for fixed a < b < ¢ and E C (a,b),

(r—1)/r c
E 1/r
/wdu < /wr/(r‘l) dp (w(EN" < C/wdu ( HE) ) ,

(b, c)
E E

where we have used in the last inequality that w™! satisfies A, (w dpu).

Remark. Tt can be proved that the fact that w satisfies AT (1) is equivalent
to each one of the statements of Lemma 3.1 (see [MPT]). From this it turns
out that w € AT (dp) if and only if w™ € A_ (wdp) which means that
there exist positive real numbers C' and 6 such that

§

wd
wE) o g a
wla,c) — fwdu

for all numbers a < b < ¢ and all subsets E C (b,c¢) (the notations in this
paper are different that the ones in [MPT]).

Theorem 3.4 is important in the study of one-sided sharp functions and
one-sided BMO spaces [MT4]. It is established in [MT4] the relation be-
tween A;f weights and one-sided BM O spaces and it is also obtained an
inequality of John-Nirenberg type for one-sided sharp functions.

The proofs of the above theorems rely heavily on the fact that u is a con-
tinuous measure. In fact, as we noticed in the introduction of this section,
the theorems do not hold for all Borel measures. The following example
shows that Theorem 3.3 does not hold for general Borel measures (this ex-
ample was obtained jointly with A. de la Torre and Maria Dolores Sarrién
and it is part of a joint work with P. Gurka and L. Pick).

Example. Let p = >~ n"), where 6, is the Dirac measure at the
point n. Let w defined p-a.e. by w(n) = 2"/n™, n € N. We claim that
w € Ai" (). In order to see this, we have to prove that there exists C' such
that

M;w(n) < Cw(n) for all natural numbers n.

In order to prove this inequality, it suffices to establish that if m and n are
natural numbers with m < n then

97
E]:m]]
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which follows easily since

n g5 — - N
S T w S

Once we have seen that w € Aj(u), it is very easy to obtain that
w™t € Ay (n). However, w=t ¢ AZ () for all p < 2. In order to prove
it, let us consider 1 < p < 2 and let p’ be its conjugate exponent. If n > 2
is a natural number then we have

1/p 1/p'

1 _ '
wlin —1,n+2) / wtdp ./ W
’ n+1,n+2) (n—l,n+1]

n 1/p n 1/
SRS G AL
= 2(n + 1)n+L 2nt1 nn

n/p n/p'
(22 )

These inequalities show that w™' & A7 (u), for p < 2, since the last term
tends to oo as n — oo.

The weights belonging to A} (1) classes for a continuous measure y have
other properties that, however, do not hold for the weights in A;(,u) for
a general Borel measure finite on bounded intervals. For instance, for gen-
eral Borel measures, we have:

(1) w € Af (1) # there exists 6 > 0 such that w'*® € A7 (u).
(2) w € Af () # there exist § > 0, and functions f and k with
— -1 ) — — £\6
M7 f <ooandk,k~' € L>*(du) such that w = k(M f)°.
However the result analogous to Peter Jones’ factorization theorem holds
for all Borel measures which are finite on bounded intervals.

Theorem 3.5 [An, Sa, MOT]. Let u be a Borel measure on the real line,
finite on bounded intervals and let 1 < p < co. A weight w is in A} (u) if

and only if there exist wy € Af () and wy € AT (p) such that w = wywl 7.

4. ONE-SIDED WEIGHTS AND SINGULAR
INTEGRALS ON THE REAL LINE

We shall say that a function k in LL (R — {0}) is a Calderén—Zygmund

loc
kernel if the following properties are satisfied:
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(4.1) there exists a finite constant By such that

k(z)dx| < By forall cand all N, with0<e <N,

e<|z|<N

and furthermore lim [ k(z)dw exists,
6_>0+5<|x\<1

(4.2) there exists a finite constant By such that

B
|k(z)| < |—2|, for all = # 0,
x

(4.3) there exists a finite constant Bs such that

|k(z —y) — k(x)| < Bsly||lz|™? for all  and y with |z| > 2|y| > 0.

Associated to k& we consider the maximal operator

T* f(z) = sup |T: f(z)],

e>0

with
T.f(x) = / K(z —9)f () dy.

le—y[>e

and the singular integral
Tf(x) = PV. [ ko= /) dy = lim T.f().
It is a well known result (see [CF] and[GR]) that if w satisfies A, then

/ T (o) P(a) di < / T f @) Puo(z) de

SC/|f(3v)|pw(sc)dav7 if 1<p< oo,



WEIGHTS, ONE-SIDED OPERATORS 125

and
W{ITS@)] > M) < oI f@) > A < § [ If@u dr itp=1

where the constant C' is independent of f and A. If we consider the Hilbert
transform

Hf(z) = P.V./%dy,

i.e., the singular integral associated to the kernel k(z) = 1/z, then the
conditions A, are necessary for the above inequalities to hold [HMW].

Our aim in this section is to determine singular integrals in the real line
(one-sided singular integrals) which map L?(w) into L? (w) (or weak L?(w))
for A; weights. This leads us to consider one-sided truncation of Calderén-
Zygmund singular kernels.

Observe that the symmetry properties of the Hilbert kernel k(x) = 1/x
produce the necessary cancellation properties of a singular integral, so that,
no one-sided truncation of 1/x is expected to produce a (one-sided) singu-
lar integral. Nevertheless, the class of general singular Calderén-Zygmund
kernels supported in a half-line is non trivial. For instance

1 sin(log|z|)

k(z) = X(=00,0) (%)

x log ||
is a Calderén-Zygmund kernel. It turns out that A; weights are good
weights for the singular integral associated to a Calderén-Zygmund kernel
with support in (—o00,0). The results that we shall present in this section
have been obtained jointly with H. Aimar and L. Forzani [AFM].

Theorem 4.4 [AFM)]. Let k be a singular integral kernel satisfying (4.1),
(4.2) and (4.3) with support in R~ = (—0c0,0). Then
(a) given a weight w in A}, = ALY (1) (v =Lebesgue measure) there ex-

ists a constant C), depending only on By, By, Bs, p and the constant
in the condition A, such that

/wwmwmms@/wwmmmm,vw<w
and

sup NPw({T" f(x) > A}) < Cpsup Nw({M*f(z) > A}), 1<p< o0,
A>0 A>0
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for all f € LP(w),

(b) given a weight w € A} with 1 < p < oo there exists a constant C
depending only on By, By, B3, p and the constant in the condition
A, such that

/ T f (o) Pule) dx < C / @) P(e) d,

for all f € L?(w),
(c) given a weight w € A there exists a constant C' depending only on
By, Bs, Bz and the constant in the condition AT such that

W £ > N < 5 [ 1@l ds

for all f € L'(w) and all A > 0.

Remarks.

(1) An analoguous result holds for A, weights, 1 < p < oo, and singular
integrals associated to Calderén-Zygmund kernels with support in
(0, 00).

(2) Consider for all A > 0 the dilation of the kernel & given by

kx(z) = Ak(Ax).

It is clear that if k£ is a Calderén-Zygmund kernel then k) is also
a Calderén-Zygmund kernel with the same constants By, B; and
Bs as k. If T are the maximal singular integrals associated to the
dilations ky then T are uniformly bounded from L?(w) into L (w)
if w satisfies A¥, 1 < p < 00, and from L'(w) into weak-L' (w) if w
satisfies A]. The next theorem is a kind of converse of this remark
and includes a two-sided version.

Theorem 4.5 [AFM]. Let k be a singular integral kernel satistfying (4.1),
(4.2) and (4.3). For each A > 0 let T denote the maximal operator with
kernel ky and let 1 < p < oo. Let w be a positive measurable function
and assume that the operators T are uniformly bounded from L”(w) into
weak-LP (w).

(a) If there exists xo < 0 such that k(zo) # 0 then w € A},

(b) If there exists x1 > 0 such that k(x,) # 0 then w € A7

(c) If there exist o < 0 < 1 such that k(xo) # 0 # k(x1) then w € A,.
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Remarks.

(1) Theorems 4.4 and 4.9 hold also for the singular integral

Tf(x)= lim T.f(x).
e—0*t
The proofs for 7" are similar to the corresponding one for 7™ or
follow easily from the theorem for T*.

(2) Since the Hilbert kernel k(x) = 1/z coincides with its dilations,
statement (c) of Theorem 4.5 gives the necessary part of the theorem
by Hunt, Muckenhoupt and Wheeden [HMW] which characterizes
the good weights for the Hilbert transform.

Theorem 4.4 is an easy consequence of Sawyer’s results for M T [Sa] and
of the next lemma which is itself an extension, to the one-sided setting, of
the good-A inequality of Coifman and Fefferman [CF]. The proof of this
lemma shows the way in which one uses A} weights to prove weighted
distribution function inequalities and, in particular, how to overcome the
essential obstacles which appear when one uses the techniques of the A,
weights theory in the one-sided setting.

Lemma 4.6 [AFM]. Let k be a singular integral kernel satistying (4.1),
(4.2) and (4.3) with support in R~ = (—o0,0). Let w be a weight in AZ.
Then there exist constants C' and 7y such that for every 0 < v < 7o the
inequality
(4.7) w({r € R:T*f(x) > 2\, MT f(z) <yA})

<Oy w({z e R:T*f(x) > A}),

holds for all f € L' and for every positive A, with § the exponent in the
condition AZ,.

Sketch of the proof of Lemma 4.6. Since the set {T* f > A} is open and has
finite measure for f in L', it can be written as a disjoint countable union
of open intervals. Let I; = (a,b) be such an interval. It is enough to prove
that there exist C' and 7o such that

(48)  w({re LT f@) > 2, M* f(x) < 1) < Oy (),

for every 0 < v < 7 and every A > 0.

If we follow the proof of the classical case (see [CF]), we would prove at
this point that if E; = {z € I, : T* f(x) > 2\, M f(z) < yA} then

|Ej| < CylL].
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This inequality and the A condition imply that
w(Ej) < C”y‘sw(a,c)7

where ¢ — b = b — a. However, now we are in trouble because the in-
tervals (a,c) generated from the intervals (a,b) are not necessarily pair-
wise disjoint, and therefore we are not able of summing in j and obtaining
w({z € R:T*f(x) > A}).

In order to avoid the difficulty explained in the above paragraph, we
proceed as follows: first, let us take the sequence defined by zo = a and
xp — Tx—1 = b— xy, for every k > 1. Second, we establish (see [AFM]) that

|E| < Cy(xpy2 — Trg1),

where Ej, = {x € (zg,xry1) : T*f(x) > 2\, M f(x) < yA}. Then we apply
the A -condition and we get

w(Ey) < 075w(xk+2 — ).

Adding up in k, and keeping in mind that the intervals (zp4o — 1) are
almost disjoint we get inequality 4.8.

5. ErRGgoDIC THEOREMS

We shall begin by introducing one of the problems studied in the ergodic
theory. Let (X, M,v) be a measure space and let 7: X — X be a measure
preserving transformation, i.e.,

(1) 7Y(E) e M for all E € M.
(2) v (r7(E)) = v(E) for all E € M.
Let us consider for a measurable function f the operator

Tf(x) = f(ra),
and the averages associated to 1" defined by

I &
Anf(x):n+1ZT1f(x) for all n € N,
=0

The ergodic theory studies the convergence in some sense of the sequence of
the averages { A, f}. More precisely, we are interested in the a.e. convergence
of the sequence of the averages associated to a function which belongs to
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some LP(v), 1 < p < oo. In order to study this problem we can proceed, as
usual, by considering the maximal operator

Mry f(x) = sup |An f ()|
neN

and proving that

(1) My is of weak type (1,1) and of strong type (p,p), 1 < p < o0,
(2) the sequence A, f converges a.e. for all f in a class which is dense
in LP(v).

In this way, one obtains the following theorem:

Theorem [B,W]. Let (X, M,v) be a measure space and let 7 : X — X be
a measure preserving transformation. Then

1
(i) v({z : Mpf(x) > A}) < 3 [ |fldv for all f € L'(v) and all A > 0.
X
(i) [ |MrflPdv < % [1flPdv, 1<p< oo, forall feLP(v).
X —1lx
(iii) A, f converges a.e. for all f € LP(v), 1 <p < co.

Once this theorem has been established, one can think of generalizations
of it. Taking into account that if 7 is a measure preserving transformation
then T is a contraction (in fact an isometry) in L!(v) and in L>(v) we see
that the following theorem is a generalization of the previous one:

Theorem [DS]. Let T be a linear operator in L'(v) which is an
L' (v) — L>(v)-contraction, i.e.,

1Tl = sup{ITflls - f € L'(w), Iflh <1} <1

and

I Tl 00 = sup{||ITflly : f € L' (1) NL=(v), || fllo < 1} < 1.
Then (i), (ii) and (iii) hold.

We observe that until now the operator T is defined on LP(v) for all p,
1 < p < 00. In the next generalization we consider linear operators which
are contractions on some fixed LP(v) space, but the operator has to be
positive in the sense that f > 0 a.e. implies T'f > 0 a.e. The following
result is due to A. Ionescu-Tulcea [I] for isometries and to M. Akcoglu [A]
in the general case (the proof in [A] uses the result for isometries).
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Theorem [A]. Let 1 < p < oo and let T be a linear positive contraction
in L?(v), i.e.,

1T, = sup{lITfllp : € LP(w), Ifll, <1} < 1.

Then
(a) [|Myflpdv < —2— [|f|pdv for all f € LP(v),
X r—1lx

(b) A, f converges a.e. for all f € LP(v).

The next natural generalization is to consider positive linear operators
defined on some LP(v) such that

Sup [T |y = sup{IT"flly : f € L*@), | fllp < 1,m € N} < o0,

These operators will be called power bounded operators. Therefore, the
question is: Does Akcoglu’s Theorem hold for positive power bounded op-
erators?

The next step is to consider positive mean bounded linear operators, i.e.,
positive linear operators such that

2@Mﬂb=ﬁmﬂAﬂmﬁf€LWWWﬂbSLREN}<W~

Of course, that T is a positive mean bounded linear operator, is the less
we can ask for the operator. However, what is really interesting is that,
as A. Brunel and R. Emilion [BE] proved, if Ackoglu’s Theorem can be
extended to positive power bounded linear operators then it can also be
extended to positive mean bounded linear operators. A. Brunel used this
reduction to prove the following theorem:

Theorem [Bru]. Let 1 < p < oo and let T : LP(v) — LP(v) be a positive
mean bounded linear operator. Then

(a) there exists C' > 0 such that [|Mrpf|Pdv < C [|f|Pdv for all
X X

ferLrv),
(b) A, f converges a.e. for all f € LP(v).

Several years before, A. de la Torre and the author proved this theorem,
but assuming that the operator 7' is invertible and its inverse is a positive
operator. The precise result is the following:
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Theorem 5.1 [MT1]. Let 1 < p < oo and let T : LP(v) — LP(v) be
a positive invertible mean bounded linear operator with positive inverse.
Then the following statements hold:

(a)

(b)

There exists C' > 0, depending only on p and sup,,~q ||4.lp, such
that -

/|MTf|pd1/§C/|f|pd1/ for all f e LP(v),
e X

A, f converges a.e. for all f € L?(v).

Of course this theorem is included in Brunel’s result with the only dif-
ference that in Brunel’s theorem the constant C' is not only a function of p
and sup,, > | AL

In what follows we shall sketch the proof of Theorem 5.1.

Sketch of the proof of Theorem 5.1. First we must say that the key ideas
for proving this theorem are the following:

(1)

The theory of one-sided weights (although there are no weights in
the statement of the theorem).

Arguments of transference.

The method of J.L. Rubio de Francia (see [R] and [CJR]) in order
to factorize weights.

The fact that T is a positive linear operator with positive inverse im-
plies that the operator T and its powers separate supports
(fg=0 = TfTg=0) and then [K] there exist positive functions

h; such that
[1svar = [ 17 sphdy

X X

for all i € Z and all f € L* (dv). Moreover, for all positive
f e L (dv),

hi — (Tv—i)>:<Jc(1—vifp'—1)l—p7

where (T%)* denotes the adjoint of T%. These functions h; will be
the weights in the proof of the theorem.

In order to give the idea of the proof we need to introduce some notations:
Let g be the measure on the real line defined by 7, 6, where §, is the
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Dirac delta at the point n. For a measurable function f and for all z € X
the function f, on the real line is defined p-a.e. as f,(n) = T"f(x) for

nonnegative integers n.

For fixed L, let us consider the truncated ergodic maximal operator de-
fined by

My f(x) = sup |A, f(x)].
n<L

In order to prove (a) it suffices to obtain

/|MT,Lf|pd1/ < C/ |f|Pdv  for all nonnegative f € LP(v)

with a constant independent of L.

Let f be a nonnegative measurable function and let N be a positive
integer. Then, by the properties of the functions h; we have

1 N
/|MT7Lf|”dV: N—H/Z|TZ(MT7Lf)|p(x)hi(x)dy(x).
X x =0

Now, the fact that the operators T" separate supports gives

T"(Mr,pf)(x) < My, (T f)(x) < M, (foxpo,n+1)()-

Therefore
Z T (M7, f)|P (2 < CIME(foxio, v ) ()P hi(2)
1=0 =0

- / M (FoXpou4.0) ()P hi () dui),

where we notice that the functions i — h;(x) are defined p-a.e. in R. Thus,
if
() the functions i +— h;(z) satisfy A} (u) for almost all z € X and with
the same Af(u)-constant
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then we obtain for almost all x € X

N
ST (M )P (@)hi(a) < C

(foXio,n+2) (0) hi(x) du(i)

|
58\8

t~

C ) (T'f(x)"hi(w).

P

Il
o

Finally, under the assumption (x), we get

N+L
/|MT7Lf|pdl/ T‘b )dl/( )
X
N-I—L-l—l »
:CW /(f(x)) dv(z).
X

If we let IV tend to oo we obtain the inequality we wished to prove. Therefore
(a) follows if we prove that (x) is implied by the assumptions on T (we have
used until here the key ideas (1), (2) and (4)).

We may notice at this point that in the harmonic analysis it is easy to
prove that the weights must satisfy the corresponding necessary condition.
However, in the ergodic theory we need to work harder, since we have to
obtain (x) which is a condition on the orbits (on the integers) from the
fact that 7' is a mean bounded linear operator which is a condition on the
measure space.

In order to prove (), we remind that h; = (T=%)* f(T"f*' =117 for all
positive f € L (v). Therefore, keeping in mind the factorization theorem
(see Section 3), we have that if there exists f € L” (v), f > 0, such that the
functions i — (T=")* f(z) and i — T°f*' =1 (z), defined p-a.e., satisfy A (1)
and A7 (u) respectively, for almost all # € X, with a uniform constant, then
the statement () holds (in fact, it is not necessary that they satisfy A7 (1)
and Aj (u) but weaker conditions). Now the problem is: How to choose
such a function f?7 Here is where the Rubio de Francia’s idea comes.

For fixed n, let us consider the sublinear operator

Suf = (AulFIP)VP + (AL F17)V,
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where A} stands for the adjoint of A,. It is clear that the operators S,
apply Lr?' (v) into e (v) and their norms are uniformly bounded. Let K
be a positive number such that

[1Snllppr < K

for all n. Let us choose a positive function g € LP?' (v) and define

oo 1 ;
nZZm n9d

=0

It is not difficult to see that w,, € L’””(y) and S,w, < 2Kw,, a.e. From
the last property we obtain

Anwzl S(ZK)I’waLI ae. and Arwl < (2K)Pw?! a.e.

Now, these inequalities and the positivity of 7' and T~! give

]_ n S r r . r
1+ 4
— ZZ;T Twl < 2K)? T?wP?  a.e.

and
n

Z T P < (2K)P(T™"77)*w?P  ae.

n+1

These two properties almost mean that, for f = w?, i — (T~%)* f(x) and
i Tifplfl(x), defined p-a.e., satisfy A7 (1) and A7 (i). The only problem
is that the function f depends on n. However, these two properties and the
relation h; = (T~7)*f(T?f? ~1)1~P are enough to obtain that (%) holds.
With this we have finished the sketch of the proof of (a) (details can be
found in [MT1]).

The statement (b) of the theorem follows from (a) and the fact that the
functions of the type h+ f — T f with h invariant and f simple are dense in
L?(v) (see [MT1]). The a.e. convergence is clear for the invariant functions
and it follows for the functions f — T'f with f simple from the fact that
n~1T™f converges a.e. to 0 for all characteristic functions of sets of finite
measure.

Final remarks.

(1) Similar results to Theorem 5.1 for the ergodic Hilbert transform and
the ergodic power function have been obtained in [S1] and [MO].
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The ergodic maximal operator and the convergence of the ergodic
averages in weighted LP'? and Orlicz spaces have been studied by
using the one-sided weights in [O1], [O3], [O4] and [O5] (see also
[G)).

The theory of weights has been useful to conjecture the answer to
some problems in the ergodic theory (see [MT2], [S2], [S3], [GM],
[FMT] and [O2]) although the results of the theory of weights are
not strictly necessary in the proofs of the theorems of these papers.
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