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CLIFFORD ALGEBRAS AND THE DOUBLE-LAYER POTENTIAL OPERATOR 

Alan G. R. Mcintosh 
Sydney, Australia 

1. I n t r o d u c t i o n 

In recent years Clifford algebras have been used in a number of 
parts of analysis and differential geometry. They have been used for 
some time in mathematical physics. In sections 2 and 3 I shall outline 
some basic concepts. This material is essentially taken from |j]. In 
the remaining sections I shall indicate why Clifford algebras are re
levant to proving the L2~boundedness of the double-layer potential 
operator on Lipschitz surfaces. This is an extension of work of Coif-
man and Murray [4] . Details will appear in the proceedings of the 
Banach Center [3]. 

I would like to thank the organizers of the Spring School for 

their exceptionally kind hospitality. 

2. C 1 1 f f o r d a 1 g e b r a s 

Consider Rn with the standard basis, written here as e ,e^, 
...,e • We regard Rn as the subspace generated by e . . , . . . ,e . We 

define a real 2n-dimensional vector space, R, » , as being generated 

by Ie0 I S C {1.•.n)* . We regard 

Rn C R/nj via the embedding e —> e* , e. --> e^ .•}. 

j • 1,...,n . 

We make R/n\ an algebra by defining 

e o " 1 

2 
ej " ~ e 0 " "

 1 • j « 1...n 

ejek * " ekej = e{j,k> 1 < 3 < k < n 

and more generally 

e j 1
e j 2 - - - e j s

 = es • 1 - ji < j 2 < ••• < h ^ n » 

S * {jr..jsl , 

and for X, y e R/n) , 

69 



we have 

X = Е Х
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џ
т

e
s

e
т • 

If n • 0 , then R
0 + 1

 = R
( 1 )

 » R ; if n = 1 , then R
1 + 1

 = R
( 2 ) 

• C , the complex numbers; if n = 2 , then R C R/
2
\ »

 t n e
 quater-

nions. If n > 2 then \R. v is not commutative. If n > 3 , then = (n) *=-
there exist non-zero elements A, u € &(r%\ such that Xu = 0 . Our 

n+1 

interest though is really in elements of R , in which case the 
following theorem applies. The conjugate of the element 

* - x0 e0 + x1 e1 + ••• + xn en 
ІS 

PROPOSITION 1. If x, y e R
n + 1
 C R

( n )
 , then 

(i) xy • <x,y> + E (x. v.* - x.y )e.e, , 
0<j<k<n

 k 3
 3 k 3 K 

(ii) xx = xx - |x|
2
 , 

— 1 —2 — 
(iii) if x ?- 0 a then x has an inverse, x =1x1 x . 

The existence of an inverse x~ of non-zero elements x € R n 

is one of the reasons for the usefulness of Clifford algebras. Another 
reason is that complex analysis extends to higher dimensions as we 
shall now see. 

3. C l i f f o r d a n a l y s i s 

In this section we wish to extend the results of complex analysis 
to Clifford algebras. Classically we would begin with C functions 

f : ft -»- C where ft is an open subset of C ; 

here, then, we consider C functions 

f : ft -• R, » where ft is an open subset of R n 

We define 
n A 

D = E 3x~ ei 

j-o d xj D 

acting on such f by 
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n 3f q 
Df = E E -r-r- e.e„ where f = E fcer ; 

j=0 S d xj D S S S ° 

by analogy with previous usage we define D = ------- eQ - ... - --— e 

Thus 
2 2 2 

DD = DD = (—.j + ----- + ... + —,5) e = A . 
9x0 9X1 9xn , 

Corresponding to the notion of holomorphic we define f to be mono-

genie if Df = 0 . 

PROPOSITION 2. If f is monogenic* then fg is harmonic for all S 

P r o o f . As Af = DDf = 0 , we have Afg = 0 . 

EXAMPLES. 

(1) n = 1 : R1 + 1 = R ( 1 ) = C . 

Here 

Df = ( ^ e o + ã x e i ) ( f o e o + f i e i > 

_ rîí° - î î i j . + (!fo + !£i)e 
^ôx0 ðx^^O lЭx.. Ә x Q

; e 1 

and so 
8f 8f. 8f 8f. 

f is monogenic iff ---• = --- and — = - ̂ - ; 

i.e. iff fQ + if- is holomorphic. 

(2) n = 3 : We consider the special functions f = f-e- + f2e2 

+ f3©3 • Thus 

D f - <a£^ e0 + • • • + 6 % e3> (f 1e1 + f2e2 + f3e3> 

df1 af0 af, af.. af0 af, 
= - ( L + — £ + £ ) e +

 l- e + - e + —=- e 
*3x.. 3x2 3x3

;e0 * axQ
 e1 3x0

 e2 3x0
 e3 

3f2 3f., 3f3 3f2 3f3 3f., 
+ ( 3 ^ " 3 ^ e1e2 + ( 3 ^ " 3x^) e2e3 + ( 3 ^ " 3x^} e163 

Therefore 

f is monogenic iff f is independent of xQ , V-f = 0 

and V x f = 0 . 

Clearly D is connected with the idea of differentiating k-forms, 

though we shall not go into details here. 
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EXAMPLES OF MONOGENIC FUNCTIONS. We first give what amounts to a non-
-example: 

(0) f(x) = x = x Qe 0 + x 1e 1 + ... + x ne n . 

Here Df = e Q - e 0 - ... - e Q = (1 - n)eQ = 0 iff n = 1 . 
Thus the identity function is only monogenic on the complex 
numbers. In higher dimension its role is taken by the following 
functions. 

(1) f.(x) = x... = x.eQ - xQe. is monogenic for 1 < j < n . 

Note that if xQ = 0 then f.(x) = x,.» = x. . From these, we 
build the following functions, also monogenic for all n : 

(2) fik(x) = 1 (x ( j )x ( k ) + x { k )x ( j )) . 

(3) For each multi-index a = (a.....a ) , where as usual the a.'s 
are non-negative integers and |a| = a. + ... + a, , we define 

Va(X) = "YTiT a n a (^ll^-—HI' KA2)\"x(2)J""x(n)"K(n)} 
II- a, a2 

where the sum is over all permutations a of |a| elements, 

and n multiplies the elements of the resulting string together. 

Note that if x = 0 then Va(x) = x
a . 

(4) The functions f(x) = £ c V (x) are monogenic on the domain 
a a a 

of convergence, as are f(x) = £ c V (x - a) for fixed c , 
a a a 

a . Indeed, our intuition from complex analysis does not lead us 

astray. Every monogenic function is of this form in some nbhd 

of each a e ft . 
From the comments in examples (3) and (4), we find that every 
real analytic function g defined on an open set il C R can 
be extended to a monogenic function f defined on an open set 
Q C R n + 1 , where Q P Rn = n . 

(5) For ft = R n + 1 \ {0} define 

D — L _ t n = 2,3,... 
f^x-n • C *- n> lvl

n~1 

E(x) = x|x|"(n+1) = _ lX' 
[ D(log |x|) , n = 1 . 

Since =• and log I x I are harmonie E is monogenic. 
|x|n"1 

(6) For y € R n + 1 , define E (x) = E(x - y) = X " Y
 +1 , x ?- y 

1 |x - y| 
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Then E is monogenic. 

(7) We use E (x) as a generalization of the Cauchy kernel (z-C)~ 
Let £ be a smooth n-dixnensional oriented submanifold of Rn 

let n(y) be a consistent unit normal at y e £ » and let f 
be integrable on £ • Define 

(Гf) U ) - І- î , x " У
n + 1

 n(y)f (y) as , xéľ. , 
|x - y|' 

n+1 where a is the area of the n-sphere in R 

Monogenicity follows by differentiability under the integral sign* 
Note that 

(Tb,(x) "^Tf^ f ( y ) ds* 
i f (x-y) .n. - (x-yLn. 

+ 7T E ek ei 3

 n 4.i *
 3 f Cy) dS v . 

n 0<j<k<n k J £ |x - y|n+1 y 

The first term is the harmonic function obtained by applying the 
double-layer potential operator to f . Indeed, by Proposition 2, 
each term is harmonic. 

Cauchy's theorem can be generalized to higher dimensions. Suppose 
f is monogenic on Q , and that ft is a bounded open subset of ft 
with smooth boundary £ • For y e £ , let n(y) denote the inward 
pointing normal. Then 

(f (x) f x € Q 
(Tf)(x) =1 ° 

10 , x € «Rn+1 \ ftQ . 

4. T h e C a u c h y s i n g u l a r i n t e g r a l 
o p e r a t o r 

As well as the operator T defined above, we can define the prin
ciple value Cauchy operator T on an n-dimensional surface £ in 
R . For a smooth function u : £ -• R , we define 

(Tu)(x) * |~ ~ p-v' í , X ~ Tn+1 n(y)u(y) dS . 
n £ |x - y|" y 

Again we see that TQ , the scalar part of T , is the double-layer 
potential operator on £ • 

Let us analyse the special case when £ * Rn and n(y) « - en . 
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Then (x - y)n(y) -= (x - y)eQ • x - y , so 

(Tu) ( *> - I- P-v- f X " yn+1 u(y) dy -= £ ek(Rku) (x) , 
n J

n |x - y|n ' k=1 K K 

R 
where Rk are the Riesz potential operators. 

To consider the L« theory of these operators, we let H denote 
the Hilbert space, 

H m L 2 ( R n ' (n) - < u " i uS eS I US e L 2 ( R n > I s 

with inner product (u,v) -» £ (ug,vg) . Let D denote the Dirac 
operator, 

k=1 K a xk 

with domain the Sobolev space H (R n), . . 

It is not hard to verify that D is a self-adjoint operator with 

spectrum a(£) = R . So f(D) = --(H) for all bounded Borel functions 

f : R -• C , and | |f (D) || « |I*IL • In particular 

D £ D ke k n D k n 

sgn (g, . ^ . S r k ' --. 1/9 ek - £ Rvek -- T . ІÎI = ^ 5 ? 7 1 = Ä T-TP^ e* = Å V 
That is, the Cauchy operator T is precisely sgn (D) . When n = 1 
this is well known, for T is the Hilbert transform. But it is some
what surprising that the Riesz transform can be represented as the 
signum of a self-adjoint operator. 

Using the functional calculus for self-adjoint operators, we can 
also write T as, for example, 

T - sgn (D) - li í Y3(t D) |£ , 

0 
where the integral is defined using the strong operator topology, and 

Y(X) * X(1 + X2)"*1 . 

This is because 

í У3
(tX) |Ł - ţç 8gn (X) , 

0 

for real numbers X . 
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5. L i p s c h i t z s u r f a c e s 

We leave now the case when £ = Rn , and suppose that £ is the 

graph of a Lipschitz function g : Rn + .R . That is, £ « {g(x)eQ 

+ x | x e lRn} , and T . is defined as above for functions u : £ -*• C . 

THEOREM. T is Lj-bounded. 

COROLLARY. The double-layer potential operator T() is ^-bounded. 

In the case when n = 1 this theorem and its corollary was first 

proved in the paper [2] of Coifman, McIntosh and Meyer. It was also 

shown that the higher dimensional result could be reduced to the one-

-dimensional estimates of [2J using the Calderon rotation method. This 

result was first used in potential theory by Verchota. Subsequently 

Coifman discovered the significance of the operators T and D de

fined above, and asked whether the one-dimensional proof could be 

generalized to give a direct proof of the theorem in higher dimensions. 

This was shown to be the case for surfaces with small Lipschitz constant 

by Murray [4], and then for all Lipschitz graphs by the author. 

To give some idea of the proof, let b = Dg , and let A 

= (I - B)~ D where B is the multiplication operator on H defined 

by Bu = bu . Then the spectrum of A is contained in a double sector 

Sw for some u> < TT/2 , where S^ = {z 6 c | arg (z) < w or 

arg (-z) < u>} . As in the case when £ =- R we find that 

т
 = 11 í Q3 dţ 
1 ir J w t t » 

where Q. -= tA(I + t A 2) . Although A is not self -ad joint, we can 

still think of T as sgn (A) for the signum function defined to 

be +1 on the right sector of S w and -1 on the left sector. Also, 

I lQtl I <
 K < °° for all t . 

So, for u, v € H , 
00 

|(Tu,v)| - |j(QtQtu, Q|v) f^| 
0 

< K{J||Qtu||
2ft}1/2{[||Q|v||

2f£}1/2 . 
0 0 

Hence the boundedness of T will be a consequence of the square 

75 



function estimate 

1/2 
{JllQ

t
u||

2
f-0 <o||u|| . 

0 

together with a dual estimate. If ||B|| < 1 , then 

«t - I <Rt - R-t> 

, 4 E E {<RJB)
k
"

S Q. (BP.)S
 + (R_.B)

k
"

S
Q. <BP.)

S
}(I - B) , 

1
 k=0 s«o ** ^ ** 

where R
t
 « (I + itA)"

1
 , J

t
 « (I + itp)~

1
 , P

t
 - (I + t

2
D

2
)

- 1
 , 

2 2-1 
and g

t
 • tD(i + t D ) .So the square function estimate for Q

t 

is a consequence of the following estimates, 

{Jllj?t
( B
-?t

) k u
H

2
^

1 / 2
^

c ( 1 + k
) M

B
H

k
 I M I

2
 » 

o 

which are similar to those proved in [2] when n = 1 . When j|B|| 

> 1 , a somewhat different expansion is needed. Details will appear 

in [3]. 

We conclude with the remark that Clifford algebras have allowed 

us to replace n-tuples of operators by single operators and hence use 

spectral theory and the functional calculus in this setting. 
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