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SOME VARIATIONAL METHODS FOR NONLINEAR MECHANICS

Ivan Hlavilek

1. Introduction

If one has to solve a physical problem as a whole, i.e., from
the physical reality to the numbers, one meets usually three major
stages:

(i) the mathematical formulation of the problem (creating a mathe-
matical model);

(ii) the approximation of the mathematical model, i.e., a transfor-
mation into one or a sequence of problems of a simpler nature,
which are solvable in finite-dimensional spaces;

(iii) the algorithm, realizing the numerical solutions of the appro-
ximate problems.

Each. of the stages gives rise to important theoretical questions,
for instance: (i) which is the most suitable mathematical formulation
(this point includes proofs of existence and uniqueness of the solu-
tion), (ii) the choice of approximations, error estimates or at least
a convergence proof for the approximations, (iii) the choice of the
algorithm, its convergence and other properties.

In the present lecture we restrict ourselves to nonlinear pro-
blems, which admit a natural variational formulation:to find a fun-
ction minimizing a convex functional over a closed convex set of ad-
missible functions. We shall discuss the stages (ii) and (iii) of
the scheme mentioned above. Our exposition is by no means exhaustive
- there exists extremely rich literature in this field (see the re-
ferences [1] - [10]). The aim of this lecture is to give a survey of
some methods, which appear to be efficient in practice.

First we present several methods of linearization:

method of Kachanov, steepest descent, contraction. (Section 2.)
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Then a basic idea of discretization by finite elements will be
shown, which transforms the initial problem formulated in a functi-
onal space with infinite by many dimensions into approximate problems
in finite-dimensional spaces. The latter problems, however, may still
be nonlinear. We present a theorem on the convergence of the finite
element approximations. The theorem follows from a more general one
for the Ritz-Galerkin method. The question of error estimates will
also be discussed.

If the approximate problems are nonlinear, their solution may
not be immediate. To this end, we present several efficient algorithms
of convex programming.

In the conclusion of this section, let us sketch a general sche-
me to clasify the position of individual steps in the course of the

total solution - see Fig. 1.
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2. Methods of linearization

For linear problems many theoretical and practical results have
been obtained. It can be therefore advantageous to solve the original
problem by generating a sequence of suitable approximate linear pro-
blems (i.e. minimizations of quadratic functionals). There are seve-
ral ways of linearization: ‘

(i) those based on the physical intuition, e.g.
- superposition of small deformations on finite deformations
in solid mechanics,
- incremental methods in plasticity,
- Kachanov’s method in elasto-plasticity;
(ii) those of abstract mathematical character, e.g.
- method of the steepest descent,
- method of contraction.
Let us present some theoretical results on the Kachanov’s method, the

steepest descent and the method of contraction.

2.1. Method of Kachanov (secant modulus method)
We shall give an abstract version of the method in a Hilbert

space H (see ﬂ], B]).

Theorem 2.1. Let a functional ¥ :H - r! be given, which has

a continuous and strongly monotone GQteaux differvential, i.e.

(2.1) D F(u+v,v) - D F(u,v) ;Cle[[2 .
Let a form B(u3x,y) be given, symmetric and bilinear with
respect to x and 'y , depending on another element u € H and

such that

(2.2) Busy,v) 2 Cyllyll?
(2.3) B(usx,y) < Cqllx|| |ivll »
(2.4) B(uju,v) = D F(u,v),
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(2.5) 4%B(x3y,y) - %B(x3x,x) + F(x) - #(y) 20 .

Let f € H and let u be the (unique) element minimizing the
functional F(v) = {F(v) - (£, v)} over H

Let € H be arbitrary. We define the iterative solutions

Yo
Ups Uy, e by the following linear problems:

(2.6) B(un; u v) = (f, v) Vv eH , n=20,1, 2, ... .

n+12
Then there exists a unique Sequence {un} and u ~ converge to

u in H .

EXAMPLE 2.1 1In the theory of elasto-plastic bodies the method
can be easily applied. The problem (2.6) is obtained by inserting u,

into the function of Lamé modulus, which is a natural idea.

2.2. Method of the steepest descent

The following iterative procedure for minimizing a funccional
is based on a simple idea: to change the approximation in the direc-
tion opposite to the gradient of the functional, i.e. in the direc-
tion of the steepest descent. Let us present some sufficient conditi-

ons for the convergence of this method.

Theorem 2.2. Let the functional F :H - r! have tne first and

second Gateaux differentials. Denoting
DF (u,v) = (G(u),v) ,

the element G(u) +<s called the gradient of F at the point u .
Let the second differential DZF(u;v,w) be continuous with respect
to u, 2f v and w are fixed.

Assume that there exist positive numbers M and m such that

(2.7) [o?F (usv,w) | < ullv|| [lwl] ,
(2.8) p%F (usv,v) 2 mf[v]]? .
Let u be known. We set woo= G(un). If w, = 0, u 18 equal

to the(unique) element uw minimizing F over H . If Vo $ 0,



we set

- 1
(2.9) Ynél T % T M Va
or
(2.10) Yn+l = Yn T Pp¥a

where o e [0,%) <s such that wu ., minimizes F on the ray
uo-oPw

Then u, ~converge to u in H . For the proof we refer e. g-
to [4] or [7].

REMARK 2.2 (i) The search of G(un) coincides with a linea-
rization of the original problem.

(ii) There are many related procedures - see e.g. the books [3]

or [4]. N

2.3. Method of contraction
The well-known principle of contractive mappings can be employ-
ed to the solution of the minimum problem.

Theorem 2.3 Let operator T : H -+ H be strongly monotone,

(Tu = Tv, u - v) > m||u - vH2

and satisfying the Lipschitz condition:
1o = Tv]] <M |u = v]].

Let y e H be given. Then the (unique) solution of the equation
(2.11) TX =y

can be found as a fixed point of the operator A , where
Ax = x - e(Tx - y), 0 < g < 2m/M2 .

Defining the iterations

(2.12) Ax

X4 = n n=0,1,...

with Xxg€ H arbitrary, we have:

x_ converge to x 1inm H ,
n

o

T e = axpll

s, - xl] =
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where

a = (1 - 2em + szMz);E < 1.

For the proof see e. g. [7] or [3].
REMARK 2.3 The above method can be applied to the
the minimum problem for the functional F over H , if
Tx - y = G(x) ,
where G(x) denotes the gradient of F at x .

In practice, the problem to evaluate from (2.12)

*n+1

a linear problem, due to the definition of the operator

3. Discretization by finite elements

solution of

represents

T

(see [7]).

Even after the linearization we still have a problem in an in-

finite-dimensional functional space. Thus we are not able to start

a numerical procedure unless the problem is reduced to finite-dimen-

sional spaces by a discretization. To this end, two general ways can

be employed - finite differences or finite elements. Having problems

on domains with general boundaries in mind, we prefer the finite ele-

ment method.

3.1. Finite element method

Let us recall briefly the main features of the finite element

discretization.

(i) The domain & c R®

3

(n = 1,2,3 in most cases) is decomposed

into a finite number of subdomains @ (e.g. simplexes if

Q 1is a polytope) such that

N

Q Q=80 for j # k .

= A 5 PR

(ii) In every subdomain Qj we choose

- a polynomial function pj(x), X € ﬁj s

- a set of nodes ij < Qj’ k = 1,2,...,E (e.g. vertices,

midpoints of the sides e.t.c.)
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- a set of nodal parameters (e.g. the values of derivatives
D[ulpj(ij), ]al = 0,1,...) such that pj is uniquely de-
termined by the set of nodal parameters.

The subdomain Ej together with the polynomial pj , the set

of nodes and nodal parameters is called a finite element.

(iii) We define a piecewise polynomial function p(x) on the whole

domain @ such that the restrictions are
Plg =Py > 3= 12,85

by equating nodal parameters at the coinciding nodes common for
any two adjacent subdomains, we can guarantee the continuity of

p and of some derivatives Dap if necessary.

EXAMPLE A classical finite element technique consists of a tri-
angulation of a polygonal domain Q@ < R2 and of using linear poly-
nomials pj ; the nodes are identified with the vertices and the no-
dal parameters with the values of pj(ij) (Ja| = 0).

Any function p <constructed above is determined uniquely by a
finite number of nodal parameters. Setting all the nodal parameters
equal to zero except one, which is equal to 1 , we obtain a basis

function oo Then any p can be written in the form

m

(3.1) p(x) = | aw (x),
m=1

where the coefficients a, are uniquely determined. Thus we are led
to spaces Sh of piecewise polynomial functions of the norm (3.1).
For instance, the space of linear finite elements (see the above
EXAMPLE) is a subspace of WI’Z(Q) N c@)

The two following properties of finite element spaces are of
great importance. (For simplicity, we present the first of them for
the plane domains Q ¢ R2 only.)

(i) Approximability: Denote h = max (diam §j). Let the family
j=1,...,N

{7} » 0 < h < hy of triangulations of & be regular, i.e. let a
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Yy > 0 exist, independent of . and such that all interior angles

in J, are bounded from below by <y. Then to every function

h
u € Wk’z(ﬂ) there exists a function v, € Sh such that
k-m
(3.2) I|u - v [| <Ch ‘u[
L O)) w2 ()
here ko <k < kl » 0 <m < k and the integers kO’ k1 are deter-
mined by the particular type of finite elements; |u denotes the

wk,Z

seminorm in wk’z(n) , generated by the derivatives of the k-th order.

(E.g. for linear finite elements one has k., = 1, kl = 2.)

0
See [5], [6] for the details.

(ii) Small support of the basis functions. In contradiction to the

classical Ritz-Galerkin method, the support of any basis function
wo in (3.1) is much smaller than @ . Therefore, if we employ the
Ritz-Galerkin method (see (3.3). (3.4), (3.5) below), in case of a
quadratic functional F we obtain a problem with a band matrix,
which is of great advantage from the computational point of view.

Let us consider again the problem
(3.3) F(u) = min over Kc H ,

where F 1is convex and K 1is a convex closed subset. Let us apply
the general Ritz-Galerkin technique by reducing the set K of admis
sible functions to the approximate set

Kh =Kn Sh N
where Sh is the space of finite elements.

(In case that the original space H 1is generated by a Cartesian

product

2 k2,2 kr,Z

kl’
(R) x ... x W w) , r > 1,

H=W Q) x W

we have to approximate each of the components by a suitable finite
element space.)

Thus we obtain an approximate problem

(3.4) F(ub) = min over K
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Substituting for uy the sum z a: W, s We are led to an equi-
m
valent problem

(3.5) #(a") = min over JKh s

where J‘h is a closed convex subset of R™ and & is a convex fun-
ction. The latter problem can be solved by various algorithms.
A few procedures of convex programming will be recommended in

Section 4.

3.2. Convergence of the finite element method

Next let us discuss the properties of the solution u of the

h
problem (3.4) especially the behaviour of the error ||u - uh|| for
h > 0.

Theorem 3.1 Let F : H >R be a functional with the first ana

second differentials and assume that

(3.6) Clllvllz < D2F(u;v,v) < CZI‘VIIZ Yu,v € H .

Let K be a closed convex subset of H, K,c H closed convex
=0

subsets for any 0< h <h, . Let u and uy be the (unique) so-

Lutions of the minimum problems (3.3) and (3.4), respectively.

Assume that

(2) to every h g (O,ho] there exists an element vh€ Ky such
that

lu - v

|l >0 for h ~» 0;
h

*
(22) v, € K, u € H *
h h ’ =y € K .
h >0

*
vy u (weakly) for
Then

(3.7) | lu - uhl[ +0 for h > 0.

For the proof see [3] - Chpt. 4, Th. 06.
REMARK 3.1 17 Note that if K, ¢ K (i.e., the so called "inter-
nal"” approximations of K ), the assumption (ii) is satisfied due to

the fact that Vi € K for any h and K is weakly closed.
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The assumption (i) is more difficult to verify even for
th K . Suppose we are able to prove that the intersection

0

Knc” @)
is dense in K . (If e.g. K = Wk’z(ﬂ) , this density is a well-known
result of Gagliardo.) Then applying estimates of the form (3.2) to a
function u € K nc”(Q) , which is close enough to u , we deduce
the convergence Vp T U .
REMARK 3.2 Sometimes it is not suitable or even possible to
construct Kh ¢ K . Then we have to prove (ii) explicitly. Such a

case is called the case of "external” approximations.

Sometimes the left inequality in (3.6) is not true and we have

only

2 2 2
(3.8) c,lvl® =« p°F(usv,v) < C2||v|[ YueK, V¥veHd,
where |+| denotes a seminorm in H . Then the following result

can be useful.

Theorem 3.2 Let functional F be coercive on K, Z.e.
lim F(v) = += for ve K, || v]]+ +=

and let it satisfy (3.8).
Assume that both the minimum problems (3.3) over K and (3.4)

over X, < K have unique solutions u and respectively.

uh 5
€ Ky exist such that

Hu-vh||->0 for h >0 .

Let to every h € (O,ho] a v

Then for h + 0 <t holds
(3.9) uy = ou (weakly) in H ,
(3.10) luy, = ul >0 .

The proof is parallel to that of Theorem 3.1.

REMARK 3.3 We often can prove on the basis of (3.9) and (3.10)
that

u > u in H (strongly). In fact, consider e.g. the case

n=uwlb2e) ,
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l"lz= I |grad v|2 dx
Q
Then (3.9) implies that u, > u in LZ(Q) . Using also (3.10)

we can readily see that u, *u in WI’Z(Q) .

3.3. Error estimates

The problem to find the rate of convergen ¢ in terms of the pa-
rameter h appears to be delicate even in relatively simple cases.
It is well-known that if a functional F satisfying (3.6) has to be
minimized over a whole Hilbert space H , the error |[|u - uh|| of
the Ritz-Galerkin approximations u, € Hh = Hn Sh is of the same
ordgr as the distance of u from the subspace Hh . Therefore one
can use any element v, € Hy in C||u - vh[| to obtain an upper
bound for ||u - uhII , and an interpolate of wu in Hh is inserted
for vy » as a rule.

For problems, where the set K of admissible functions 1is not
the whole space H (i.e. for variational inequalities), we have only
]55

(3.11) [la = ull < C[dist(u,Kh)

s

in general. In particular cases, however, the estimate (3.11) is not
optimal. To the author’s knowledge, only two methods for quasi-opti-
mal a priori error estimates have been proposed:

(i) method of one-sided approximations (MOSCO and STRANG [11]),
(i1) method of FALK ([12]) .

Method of one-sided approximations is based on the following

lemma.

Lemma 3.1 Let F be a functional satisfying the conditions
(3.6).

Let K be a convex closed subset of H and K, ¢ K a closed

convex subset. Let u and wu, be the (unique) solutions of the

problems (3.3) and (3.4), respectively.

Let an element w € Ky exist such that 2u - wy, e K. Then
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(3.12) o = ul] < €/e?] u - wll -

For the proof see e.g. [ll] or [13].
Hence the error is bounded from above by the distance from u

to LA If we succeed in finding a suitable element for which

Wy o
the estimate is possible, we obtain the same rate of convergence for

u - ou . Thus the whole problem is reduced to the construction of

w € K o, 2u-w €K w close to u . (See [11], [13], [14] for

h h

such an approach.)

h

REMARK 3.4 Let a functional F satisfy only (3.8) instead of
(3.6). Assuming that Kh c K and both (3.3) and (3.4) have unique

solution u and up respectively, we obtain

(3.13) [u - uhl < (CZ/CI)%||U - whll

for any Wy, € Kn such that 2u - v, € K .
(iii) Method of Falk consists in the following lemma.

Lemma 3.2 Let
(3.14) F(v) = % A(v,v) - f(v) ,

where A(u,v) <8 a symmetric, positive bilinear form continuous on
Hx H, f € H> a gtven linear continuous functional.
Let K and Ky be closed convex subsets of H . Assume that

the problems of minimizing F over K and over K have solutions

u and upy

Then it holds

, respectively.

(3.15) A(u—uh,u-uh) < [f(u-vh) + f(uh«v) + A(uh—u,vh—u) +
+ A(u,v -u) + A(u,v—uh)] Vv € K, Vvh € K, .
The proof follows from the conditions

A(u,v-u) - f(v-u) > 0 v € K

A(uh,vh—u) - f(vh-u) >0 vy € Kh .
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The estimate (3.15) can be utilized provided the solution u

is sufficiently regular. In some exanples, the two terms
[A(u,vh-u) + f(u—vh)] and [A(u,v-uh) + f(uhvv)]

can be transformed by means of Green’s theorem into surface integrals
and the latter estimated by a suitable choice of Vi e Kh and
v € K (see e.g. [15], [16], [17] for the detailed proofs in case of

unilateral boundary value problems).

4. Some algorithms of convex programming

We are going to discuss several algorithms, which are suitable

for the solution of the approximate problem (3.5), i.e. for

fYah) = min over JCh < rR" .

Since both the function &% and the set JKh are convex, the
problem belongs to convex programming.
In general, we distinguish two classes in convex programming:

rR™),

(i) problems without constraints (;Kh

(ii) problems with constraints (15h c Rm,Jﬁh #R™).

4.1. Problems without constraints

4.1.1 Gradient methods. The well-known approach of the steepest
descent (gradient method), presented already as a method of lineari-
zation, can be employed also in a finite-dimensional space. The con-
vergence is guaranteed by the sufficient conditions of Theorem 2.2.

Moreover, we have the error estimate

h n h
(4.1) [ug-a" | < a [lug-a”|]
where 0 < q < 1 , provided U4y Tou, ot e v and oL is choosen
properly - see [4] (i.e. a = a, 0 < a < 2/M with the optimal va-

lue o = 2/(M+m) or a, to be adjusted at any step).
Although the gradient methods are relatively simple, they con-

verge too slowly in practice. In fact, the minimal value of q in
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(4.1) being

9pin = (M-a)/ (M+m) ,

it ié very close to 1 if the matrix of the second derivatives Dzér
(the Hessian) is ill-conditioned (i.e. if m/M << 1).

EXAMPLE 4.1 Consider F(x,y) = %(x2/32+ y2/b2). The eigenvalues
of sz' are 3_2, b—2 and b2/a2 = m/M . If bz/a2 $$ 1, the iso-
hypses;ellipses are very long and the method of the steepest descent

requires a great number of steps to reach a sufficient accuracy.

(A phenomenon of "zig-zagging".)
Consequently, we use the gradient method only as the first step

of other more efficient methods.

4.1.2 Conjugate gradient methods
Here we describe only the main idea. Consider a quadratic fun-
ctional
F(v) = HA(v,v) - (£,v) ,
with A symmetfic and positive definite. Assume that u, has been
found. Then we'set

Uiyl T Y, + Xwn , n=0,1,...,m-1,

where 1 € r! minimizes the function £f(X) = ﬁYun + Awn) and W

is one of the conjugate directions {wo,wl,...,w; } , which satisfy

the conditions
(Ayi, wj) =0 for i # j

and, (Aw,, wi) # 0 . We can take

w, = -G(uo) = -Au

0 +f.

0

It is not difficult to prove that u_ = a
m

the problem (3.5) can be obtained by a finite number of steps.

, 1.e., the solution of

EXAMPLE 4.2 Consider again the quadratic function from EXAMPLE

4.1, It is obvious that already u,y is the exact solution.
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For a convex non-quadratic function, the algorithm can be adap-
ted - see e.g. [2], [4]. The modified algorithm is based on the appro-

ximation of ¥ by a quadratic function
{

¢(v) = 5Yah) + % p? 3Kah; v—ah, v-ah)

in a neighbourhood of ah .

4.1.3 Methods of relaxation

One of the simplest algorithms consists in fixing successively

the m - 1 wvariables of QYVI,...,V_) and relaxing only one of

m
them.to get the minimum. Thus we start with a fixed vo and calcula-
n+1 n
te v step by gtep from the known vector v as follows:
v2+1 minimizes the function
n+1 n+l n n 1
(4.2) f(t) = 3Tv1 sereaVy 1ot Vigs e s V) over R™ ,

i=1,...,m .
For quadratic ¥ the procedure coincides with the Gauss-Seidel

algorithm.

Theorem 4.1 Let

m
Fv) = fb(v) + 151 ai|vi[ s Gy 2 o,

where 9b 18 coercive, strictly convex and Cl-function. Then the
relaxation procedure converges to the solution ah of (3.5).

For the proof see [2] .

REMARK 4.1 Let us modify the relaxation algorithm as follows:

denote the parameter minimizing £(t) in (4.2) by v;+1/2 and set
(4.3) v;+1 = (1 - w)v; + mv2+1/2, i=1,...,m ,

where 0 < w < 2 . .The algorithm with « > 1 is called the succes-
sive over-relaxation (SOR) and that with w < 1 the successive un-
der-relaxation. The aim of introducing the parameter w is to acce-

lerate the convergence.
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4.2 Problem with constraints

4.2.1 Relaxation with projection

Let us suppose that a convex closed set ]ﬁh c¢ R™ can be writ-

ten as _
m
Ky =TT 5%
u=1
where K, = [ai’bi]’ -® < a; < b; < +» , i.e. the constraints are

local, prescribed separately for each coordinate. Let ¥ be a qua-
dratic functional

F(v) = BA(v,v) - (£,v) .

Denote the parameter minimizing the function £(t) in (4.2) by

v:+1/2 and set
n+l _ _ n n+l/2
(4.4) vy = PKi[(l w)vi + wvy 1,
where P is the projection onto K, .
Ki i

Theorem 4.2 Let A(u,v) be a symmetric and positive definite
bilinear form, 0 < w <2 . Then the procedure (4.4) converges to the
solution a" of (3.5).

For the proof see [2].

REMARK 4.2 1In particular, Theorem 4.2 applies to the problem

without constraints, where I(i = Rl, i= 1,2,...,5 .

REMARK 4.3 The algorithm appears to be the most efficient for

numerous variational inequalities - cf. [21.

REMARK 4.4 The relaxation algL;ithm and the convergence results
can be extended to a more general class of problems. Let the follo-
wing decomposition hold:

o N N _
R" = T] v, , dim v, = my, J m, =m,

j=1 1 1

i N
(4.5) lCh = 17 Ki’ I(i c V1 are convex and closed subsets.
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Then the procedure is called "relaxation by blocks! (see [2]).

REMARK 4.5 1In some cases the relaxation algorithm converges.

even for a more general set _le, provided the initial element v0

is chosen prcperly.

4.2.2 Methods of feasible directions

One of the first methods proposed for convex programming was the
method of feasible directions (see [18],[19], [3], [4]).

Assume that

Xy = {verE (V) <

A
(=]

, 1i=1,...,m ,
(aj,v) = bj’ j =mtl,...,n}

where fi € C1 are convex functions, aj and bj are given vectors.
Let v, E_Lh be given. We seek a ("feasible") direction
p € R™ such that
3a > 0, vy tareXy

YO < a 2«

f(v0+ap) < f(vo)

Then we set vy =V + %P where %y minimizes the function
f(a) = 5Yv0»+ ap) over Ehe interval (O,d] ;s then the procedure is

repeated.

In case of linear constraints
fi(v) = (ai,v) - bi , i=1,...,m,

the feasible direction p can be determined as follows. Let

(A; (ag,p) 20 Vi e{1 21 2 m[(ai,vo) - "1} s
(#j,p) =0 j = mtl,...,n ,
(3) lel ;1 >

«©) p minimizes the functional DF(vy,p) S é(P)

over -the set of all p satisfying (A) and (B).

The problem (A), (B), (C) belongs to linear programming.
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Additional requirements, which guarantee the acceleration of the
convergence and enable us to avoid the "zigzagging", are presented

in the book [18]. (See also [19].)

4.2.3 Methods of conjugate gradients
The idea‘of conjugate gradients can be extended to problems with

a quadratic functional F and linear constraints (cf. [4]).

4.2.4 Duality methods-search for a saddle point
Let us suppose that

X, = {ve le(q,<1>(V))n <0 ¥q e A} ,

where A ¢ R® is a cone with the vertex 0 , and & : R™ > R" is a

function.

EXAMPLE. If
JCh = {ve Rm|fi(v) <0, 4i=1,2,...,n} ,

we can set

d(v) = {fl(v), fz(v),..., fn(v)} R

=]

4.6) A =1{qe€ R“Iqi >0 Vi), (q,2(v)) = Y a £, (v) .

It is obvious that

+o for v¢¥H, ,
sup (q, ®(v)) = b

qeh 0 for v eJ&h .

Thus the (primal) problem to minimize F(v) over th is equi-
valent with:
(4.7) - inf sup {F(v) + (q, ¢(V))n} .

verR™ qel

Then q € A is called a Lagrange multiplier and

£L(v,q) = F(v) + (q, LECODIN
a Lagrangian.
The problem
4.8) sup inf £L(v,q)

qeA veR

’
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‘is called the dual of the problem (4.7).
If
.‘g(u,p) = min max £&(v,q) = max min £(v,q) ,
ver™ qeA q€eA veR™
the pair {u,p} 1is called a saddle point (point of min-max).
Assume that
Fv) = 5A(v,v) - (f,v) ,
m

A 1is symmetric, positive definite on R .

a saddle point exists,

[lew) - e < f|u- VHE Yu,v € R" ,

f(v) = (q, o(v))n for any fixed q € R® 1is a convex

lower semi-continuous function on RT .

One method of a search for the saddle point is the algorithm

of Uzawa :

po € A chosen , we calculate uo, pl, ul, ... such that

v minimizes ZF(v) + (p©, ¢(v))n over v € R®, m=0,1,...,

n+l _ m m
P =P, (p" + p 2 (7)) ,

where PA is the projection of R"™ onto A and Pm € Rl is a pro-
perly chosen parameter.

Theorem 4.3 Under the above assumptions, it holds

m

u > u
provided
0<l!0$_ F‘m; ul’
where ag s 9y are suitable parameters and u minimizes F over
- _.h
xh(u = a).

For the proof see [2].
REMARK 4.5 The algorithm of Uzawa is advantageous if the pro-

jection PA is easy to implement (see e.g. the EXAMPLE (4.6)).
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