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SOME VARIATIONAL METHODS FOR NONLINEAR MECHANICS 

Ivan Hlav££ek 

1. Introduction 

If one has to solve a physical problem as a whole, i.e., from 

the physical reality to the numbers, one meets usually three major 

stages: 

(i) the mathematical formulation of the problem (creating a mathe­

matical model); 

(ii) the approximation of the mathematical model, i.e., a transfor­

mation into one or a sequence of problems of a simpler nature, 

which are solvable in finite-dimensional spaces; 

(iii) the algorithm, realizing the numerical solutions of the appro­

ximate problems. 

Each of the stages gives rise to important theoretical questions, 

for instance: (i) which is the most suitable mathematical formulation 

(this point includes proofs of existence and uniqueness of the solu­

tion), (ii) the choice of approximations, error estimates or at least 

a convergence proof for the approximations, (iii) the choice of the 

algorithm, its convergence and other p r o p e r t i e s . 

In the present lecture we restrict ourselves to nonlinear pro­

blems, which admit a natural variational formulation:to find a fun­

ction minimizing a convex functional over a closed convex set of ad­

missible functions. We. shall discuss the stages (ii) and (iii) of 

the scheme mentioned above. Our exposition is by no means exhaustive 

- there exists extremely rich literature in this field (see the re­

ferences [l] - [lO]). The aim of this lecture is to give a survey of 

some methods, which appear to be efficient in p r a c t i c e . 

First we present several methods of linearization: 

method of Kachanov, steepest descent, contraction. (Section 2.) 
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Then a basic idea of discretization by finite elements will be 

shown, which transforms the initial problem formulated in a functi­

onal space with infinite by many dimensions into approximate problems 

in finite-dimensional spaces. The latter problems, however, may still 

be nonlinear. We present a theorem on the convergence of the finite 

element approximations. The theorem follows from a more general one 

for the Ritz-Galerkin method. The question of error estimates will 

also be discussed. 

If the approximate problems are nonlinear, their solution may 

not be immediate. To this end, we present several efficient algorithms 

of convex programming. 

In the conclusion of this section, let us sketch a general sche­

me to clasify the position of individual steps in the course of the 

total solution - see Fig. 1. 

^ F ( u ) = min over K/ (dim K = +~) 

\F°(u) = min over Ky> 

Discretization 

\ F (u, ) = min over K, ^> 

<^F~Cu7) = min over KR ^> 

(dim K, < +00) 
Һ 

.
H
{Solution of a linear System I [Convex programming 
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2„ Methods of linearization 

For linear problems many theoretical and practical results have 

been obtained. It can be therefore advantageous to solve the original 

problem by generating a sequence of suitable approximate linear pro­

blems (i.e. minimizations of quadratic functionals). There are seve­

ral ways of linearization: 

(i) those based on the physical intuition, e.g. 

- superposition of small deformations on finite deformations 

in solid mechanics, 

- incremental methods in plasticity, 

- Kachanov's method in elasto-plasticity; 

(ii) those of abstract mathematical character, e.g. 

- method of the steepest descent, 

- method of contraction. 

Let us present some theoretical results on the Kachanov's method, the 

steepest descent and the. method of contraction. 

2.1. Method of Kachanov (secant modulus method) 

We shall give an abstract version of the method in a Hilbert 

space H (see [l ], [8 ]) . 

Theorem 2.1. Let a functional 9" :H ->• R be given, which has 

a continuous and strongly monotone Gateaux differential, i . e . 

(2.1) D jr(u+v,v) - D ̂ (u,v) >_ C-J |v | |2 . 

Let a form B(u;x,y) be given, symmetric and bilinear with 

respect to x and y _, depending on another element u £ H and 

such that 

(2.2) B(u;y,y) > C2||y||
2 , 

( 2 . 3 ) B(u;x,y) < C3||x|| ||y|| , 

(2.4) B(u;u,v) -D-f(u,v), 
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(2.5) ?5B(x;y,y) - %B(x;x,x) + ̂ (x) - ̂ (y) ^ 0 . 

Let f € H and let u be the (unique) element minimizing the 

functional F(v) = { i*"(v) - (f, v)} over H . 

Let u„ € H &e arbitrary. We define the iterative solutions 

u , u?, ... by the following linear problems: 

(2.6) B(u ; u A l , v) = (f, v) Vv £ H , n = 0, 1, 2, ... . 

Then there exists a unique sequence {u } and u converge to 
^ n n n 

U in H . 

EXAMPLE 2.1 In the theory of elasto-plastic bodies the method 

can be easily applied. The problem (2.6) is obtained by inserting u 

into the function of Lame' modulus, which is a natural idea. 

2.2. Method of the steepest descent 

The following iterative procedure for minimizing a functional 

is based on a simple idea: to change the approximation in the direc­

tion opposite to the gradient of the functional, i.e. in the direc­

tion of the steepest descent. Let us present some sufficient conditi­

ons for the convergence of this method. 

Theorem 2.2. Let the functional F :H ->• R have the first and 

second Gateaux differentials. Denoting 

DF(u,v) = (G(u),v) , 

the element G(u) is called the gradient of F at the point u . 

2 

Let the second differential D F(u;v,w) be continuous with respect 

to u 3 if v and w are fixed. 

Assume that there exist positive numbers M and m such that 

(2.7) |D2F(u;v,w)| < M||V|| | | W | | , 

(2.8) D2F(u;v,v) > m||v||2 . 

Let u be known. We set w -= G(u ). If w = 0, u is equal 
n n n J n n n 

to the (unique) element u minimizing F over H . If w JL o 
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we set 

(2.9) 

ov 

(2.10) 

wheve pn e [o»°°) is such that u
n+i minimizes F on the vay 

u - pw n n 

Then u convevge to u in H . For the proof we refer e. g. 

to [4] or [7] . 

REMARK 2.2 (i) The search of G(u ) coincides with a linea-
n 

rization of the original problem. 

(ii) There are manjr related procedures - see e.g. the books [3] 

or [4]. 

2.3. Method of contraction 

The well-known principle of contractive mappings can be employ­

ed to the solution of the minimum problem. 

Theovem 2. Z Let opevatov T : H ->• H be stvongly monotone^ 

i. e. 

2 
(Tu - Tv, u - v) ̂  m| Ju - v|I 

and satisfying the Lipschitz condition: 

I|Tu - Tv|I £ M||u - v|I. 

Let y € H be given. Then the (unique) solution of the equation 

(2.11) Tx = y 

can be found as a fixed point of the opevatov A > wheve 

2 
Ax = x - e(Tx - y), 0 < e < 2m/M 

Defining the itevations 

(2.12) Kn+1 - Axn , n - 0,1,... 

with x0 e H avbitvavy3 we have : 

x convevge to x in H , 

iun--11 i r f r iu0 -
 Axoi 
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where 

a - (1 - 2em + e V ) ^ < 1 . 

For the proof see e. g. [7] or [3]. 

REMARK 2.3 The above method can be applied to the solution of 

the minimum problem for the functional F over H , if 

Tx - y = G(x) , 

where G(x) denotes the gradient of F at x . 

In practice, the problem to evaluate x - from (2.12) represents 

a linear problem, due to the definition of the operator T (see [7]). 

3. Discretization by finite elements 

Even after the linearization we still have a problem in an in­

finite-dimensional functional space. Thus we are not able to start 

a numerical procedure unless the problem is reduced to finite-dimen­

sional spaces by a discretization. To this end, two general ways can 

be employed - finite differences or finite elements. Having problems 

on domains with general boundaries in mind, we prefer the finite ele­

ment method. 

3.1. Finite element method 

Let us recall briefly the main features of the finite element 

discretization. 

(i) The domain Q c R (n = 1,2,3 in most cases) is decomposed 

into a finite number of subdomains Q, (e.g. simplexes if 

Q is a polytope) such that 

N 
(2 = {Jfì., ß. n Й. = Я forjî-

j-1 J 3 R 

(ii) In every subdomain ft. we choose 

- a polynomial function p.(x), x e ft. , 

- a set of nodes Q-v^ *-•» k = 1,2,...,k (e.g. vertices, 

midpoints of the sides e.t.c.) 
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- a set of nodal parameters (e.g. the values of derivatives 

D'a'p.(Q.,), | at | = 0,1,...) such that p. is uniquely de-
3 3 K 3 

termined by the set of nodal parameters. 

The subdomain S3. together with the polynomial p. , the set 

of nodes and nodal parameters is called a finite element, 

(iii) We define a piecewise polynomial function p(x) on the whole 

domain ft such that the restrictions are 

p | 0 j - pj • * • - . - N •> 

by equating nodal parameters at the coinciding nodes common for 

any two adjacent subdomains, we can guarantee the continuity of 

p and of some derivatives Dap if necessary. 

EXAMPLE A classical finite element technique consists of a tri-

2 

angulation of a polygonal domain ft c R and of using linear poly­

nomials p. ; the nodes are identified with the vertices and the no-

dal parameters with the values of p . ( Q . i ) ( ia| = 0 ) . 

Any function p constructed above is determined uniquely by a 

finite number of nodal parameters. Setting all the nodal parameters 

equal to zero except one, which is equal to 1 , we obtain a basis 

function w . Then any p can be written in the form m J r 

m 

(3.1) p(x) - I amwm(x) , 
m= 1 

where the coefficients a are uniquely determined. Thus we are led 
m 

to spaces S, of piecewise polynomial functions of the norm (3.1). 

For instance, the space of linear finite elements (see the above 

EXAMPLE) is a subspace of W1,2(ft) n C (ft ) . 

The two following properties of finite element spaces are of 

great importance. (For simplicity, we present the first of them for 
2 

the plane domains ft c R only.) 

(i) Approximability: Denote h = max (diam ft.). Let the family 
3=1,...,N 3 

{:T, } , 0 < h -4 h 0 of triangulations of ft be regular, i.e. let a 
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Y > 0 exist, independent of a and such that all interior angles 

in S axe. bounded from below by Y* Then to every function 

k 2 u e W ' (SI) there exists a function v, e S, such that h h 

(3 .2 ) | | u - v j l 4 C h k ~ m | u | ; 
n Wm,Z(fi) Wk,Z(ft) 

here k 4 k ^ k.. » 0 < : m < k and the integers kn, k, are deter­

mined by the particular type of finite elements; [uj 1 _ denotes the 
W » k 2 seminorm in W ' (ft) , generated by the derivatives of the k~th order. 

(E.g. for linear finite elements one has k~ - 1, k, = 2.) 

See [5j, [6] for the details. 

(ii) Small support of the basis functions. In contradiction to the 

classical Ritz-Galerkin method, the support of any basis function 

w in (3.1) is much smaller than 0. » Therefore, if we emplov the 

m ' v 

Ritz-Galerkin method (see (3.3). (3.4), (3.5) below), in case of a 

quadratic functional F we obtain a problem with a band matrix, 

which is of great advantage from the computational point of view. 

Let us consider again the problem 

(3.3) F(u) = min over K c H , 

where F is convex and K is a convex closed subset. Let us apply 

the general Ritz-Galerkin technique by reducing the set K of admis 

sible functions to the approximate set 

(In case that the original space H is generated by a Cartesian 

product 
k,,2 k?,2 k ,2 

H = W (fi) x W (fi) x ... x W (fi) , r > 1 , 

we have to approximate each of the components by a suitable finite 

element space.) 

Thus we obtain an approximate problem 

(3.4) F(u, ) = min over K . 
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Substituting for u. the sum t a w , we are led to an equi-° h m m ' 

valent problem 

(3.5) #"(ah) = min over X 
h 

where 3C, is a closed convex subset of R and & is a convex fun-
h 

ction. The latter problem can be solved by various algorithms. 

A few procedures of convex programming will be recommended in 

Section 4. 

3.2. Convergence of the finite element method 

Next let us discuss the properties of the solution u, of the 

problem (3.4) especially the behaviour of the error ||u - u. || for 

h •* 0. 

Theorem 3. 1 Let F : H -*• R be a functional with the first and 

second differentials and assume that 

(3.6) C j |v| | 2 < D2F(u;v,v) 4 C2I |v| |
2 Vu,v £ H . 

Let K be a closed convex subset of H, K.c H closed convex 

subsets for any 0 < h <_ h„ . Let u and u, be the (unique) so­

lutions of the minimum problems (3.3) and (3.h)3 respectively. 

Assume that 

(i) to every h £ (0,h0J there exists an element v € K, such 

that 

! | u - v- | | -> 0 for h + 0; 

=>u є K 
(ii) v, €. K, , u e H , n n 

* 

v, —- u (weakly) for h •> 0 

Then 

(3.7) | |u - u h| | -> 0 for h -> 0. 

For the proof see [3] - Chpt. 4, Th. 06. 

REMARK 3.1 1° Note that if K
h
 c K (i.e., the so called "inter­

nal" approximations of K ) , the assumption (ii) is satisfied due to 

the fact that v e K for any h and K is weakly closed, 
h 
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2 The assumption (i) is more difficult to verify even for 

K. c K . Suppose we are able to prove that the intersection 

K f> C°° (a) 

k 2 
is dense in K . (If e.g. K = W * (8) , this density is a well-known 

result of Gagliardo.) Then applying estimates of the form (3.2) to a 

function u € K n C°°(ft) , which is close enough to u , we deduce 

the convergence v, -»• u . 

REMARK 3.2 Sometimes it is not suitable or even possible to 

construct K, c K . Then we have to prove (ii) explicitly. Such a 

case is called the case of "external" approximations. 

Sometimes the left inequality in (3.6) is not true and we have 

only 

( 3 . 8 ) Cx | v | 2 < D 2 F ( u ; v , v ) <. C2J | v | | 2 Vu £ K, V v e H , 

where |»| denotes a seminorm in H . Then the following result 

can be useful. 

Theorem 3.2 Let functional F be coercive on K , i . e . 

lim F(v) = +« for v € K , | | v|| + +co 

and let i t satisfy (3.8). 

Assume that both the minimum problems (3.3) over K and (3.4) 

over K, c K have unique solutions u and u, , respectively. 

Let to every h £" (0,hn] a v. e K. exist such that 

| | u - v h | | •* 0 for h + 0 . 

Then for h •* 0 i t holds 

(3.9) uh~- u (weakly) in H , 

(3.10) |uh - u| -* 0 . 

The proof is parallel to that of Theorem 3.1. 

REMARK 3.3 We often can prove on the basis of (3.9) and (3.10) 

that u h -*- u in H (strongly). In fact, consider e.g. the case 

H = W1,2(ft) , 
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• < • - I |grad v| dx 

Then (3.9) implies that u h -*• u in L2(n) . Using also (3.10) 

1 2 we can readily see that u, ->• u in W ' (&) . 

3.3. Error estimates 

The problem to find the rate of convergen t in terms of the pa­

rameter h appears to be delicate even in relatively simple cases. 

It is well-known that if a functional F satisfying (3.6) has to be 

minimized over a whole Hilbert space H , the error ||u - u, || of 

the Ritz-Galerkin approximations u, e H, = H A S, is of the same 

order as the distance of u from the subspace H, . Therefore one 

can use any element v, € H, in C||u - v, j j to obtain an upper 

bound for j | u ~- u, | | , and an interpolate of u in H, is inserted 

for v, , as a rule, h 

For problems, where the set K of admissible functions is not 

the whole space H (i.e. for variational inequalities), we have only 

(3.11) | |u - u h| | £ c[dist(u,Kh)]
is , 

in general. In particular cases, however, the estimate (3.11) is not 

optimal. To the author's knowledge, only two methods for quasi-opti­

mal a priori error estimates have been proposed: 

(i) method of one-sided approximations (M0SC0 and STRANG [ll]), 

(ii) method of FALK ([12]) . 

Method of one-sided approximations is based on the following 

lemma. 

Lemma 3.1 Let F be a functional satisfying the conditions 

(3.6). 

Let K be a convex closed subset of H and K. c K <Z closed 
h 

convex subset. Let u and u, be the (unique) solutions of the 

problems (3.3) and (3.4),, respectively. 
Let an element w, c K, exist such that 2u — w.̂  e K . Then 
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(3.12) ||u - u
h
|| < ( t y C j ^ H u - w

h
|| . 

For the proof see e.g. [ll] or [13]. 

Hence the error is bounded from above by the distance from u 

to w, . If we succeed in finding a suitable element w
h
 , for x^hich 

the estimate is possible, we obtain the same rate of convergence for 

u, - u . Thus the whole problem is reduced to the construction of 

w
h
 e K , 2u - w e K, w

h
 close to u . (See [ll], [13], [14] for 

such an approach.) 

REMARK 3.4 Let a functional F satisfy only (3.8) instead of 

(3.6). Assuming that K, c K and both (.3.3) and (3.4) have unique 

(3.13) |u - u
h
| < ( C ^ / C ^ Ц u - w

h
|| 

(iii) Method of Falk consists in the following lemma. 

Lemma 3.2 Let 

(3.14) F(v) = h A(v,v) - f(v) , 

where A(u,v) is a symmetric3 positive bilinear form continuous on 

H x H ^ f e H ' a given linear continuous functional. 

Let K and K, be closed convex subsets of H . Assume that 

the problems of minimizing F over K and over K, have solutions 

u and u, } respectively. 

Then it holds 

(3.15) A(u-u
h
,u-u

h
) ̂  [f(u-v

h
) + f(u

h
-v) + A(u

h
-u,v

h
~u) + 

+ A(u,v
h
-u) + A(u,v-u

h
)] Vv £ K, Vv h € Kh . 

Th'e proof follows from the conditions 

A(u,v-u) - f (v-u) >̂  0 v e K , 

A(u, ,v,-u) - f(v,~u) > 0 
h h n = 
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The estimate (3.15) can be utilized provided the solution u 

is sufficiently regular. In some examples, the two terms 

[A(u,vh-u) + f(u-vh)] and [A(u,v-uh> + f(uh~v)] 

can be transformed by means of Green's theorem into surface integrals 

and the latter estimated by a suitable choice of v, £ K, and 
h h 

v e K (see e.g. [l5] , [16], [17] for the detailed proofs in case of 

unilateral boundary value problems). 

4. Some algorithms of convex programming 

We are going to discuss several algorithms, which are suitable 

for the solution of the approximate problem (3.5), i.e. for 

fia ) = min over J£, c R 

n 

Since both the function 3^ and the set j£, are convex, the 

problem belongs to convex programming. 

In general, we distinguish two classes in convex programming: 

(i) problems without constraints (*̂ v. = ^ ' * 

(ii) problems with constraints (X, C RTO, % ^Rm) • 

4.1. Problems without constraints 

4.1.1 Gradient methods. The well-known approach of the steepest 

descent (gradient method), presented already as a method of lineari­

zation, can be employed also in a finite-dimensional space. The con­

vergence is guaranteed by the sufficient conditions of Theorem 2.2. 

Moreover, we have the error estimate 

<*•-) I K - * h | | < q n l l « 0 - a h l l • 

where 0 < q < 1 , provided u ., = u - a w and a is choosen 
^ r n+1 n n n n 

properly - see [4] (i.e. a = a, 0 < a < 2/M with the optimal va­

lue a - 2/(M+m) or a to be adjusted at any step). 

Although the gradient methods are relatively simple, they con­

verge too slowly in practice. In fact, the minimal value of q in 
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(4.1) being 

qmin = (M-J»)/(M+m) » 

2 
it is very close to 1 if the matrix of the second derivatives D & 

(the Hessian) is ill-conditioned (i.e. if m/M << 1 ) . 

EXAMPLE 4.1 Consider ^(x,y) - %(x2/a2+ y 2 / b 2 ) . The eigenvalues 

of D V are a"2, b" 2 and b 2/a 2 - m/M . If b 2/a 2 << 1 , the iso-

hypses-ellipses are very long and the method of the steepest descent 

requires a great number of steps to reach a sufficient accuracy. 

(A phenomenon of "zig-zagging".) 

Consequently, we use the gradient method only as the first step 

of other more efficient methods. 

4.1.2 Conjugate gradient methods 

Here we describe only the main idea. Consider a quadratic fun­

ctional 

j*-(v) = JgA(v,v) - (f,v) , 

with A symmetric and positive definite. Assume that u has been 

found. Then we set 

un+l = un + X wn ' n = 0,1,...,m-1 , 

where X e R minimizes the function f(X) = ̂ (u + Xw ) and w 
n n n 

is one of the conjugate directions {w~,w,,...,w_ } , which satisfy 
m-1 

the conditions 

(Aw±, W j ) - 0 for i H 

an d (Aw., w.) 9- 0 . We can také 

w Q = -G(uQ) = -AuQ + f . 

It is not difficult to prove that u_ = a , i.e., the .solution of 
m 

the problem (3.5) can be obtained by a finite number of steps. 

EXAMPLE 4.2 Consider again the quadratic function from EXAMPLE 

4.1. It is obvious that already u„ is the exact solution. 
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For a convex non-quadratic function, the algorithm can be adap­

ted - see e.g. [2], [4]. The modified algorithm is based on the appro­

ximation of f by a quadratic function 

/ 

ф(v) = Г(a

Ъ) + h D 2 ?(aЪ; v-a
h
, v-a

h
) 

in a neighbourhood of a 

4.1.3 Methods of relaxation 

One of the simplest algorithms consists in fixing successively 

the m - 1 variables of ^ ( v .,...,v_) and relaxing only one of 

m
 0 

them.to get the minimum. Thus we start with a fixed v and calcula­

te v step by ^tep from the known vector v as follows 

n+1 
v
i 

n+1 

..n+1 

ninimizes the function 

// o\ _/_\ /rv
 n
+1 n+1 _ n nv _, 1 

(4.2) f(t) = 3r(vl » • • • »
v
i_! »

t
»

v

i + 1
> • • • »

v

m
)
 o v e r R

 » 

i = 1,...,m . 

For quadratic 9* the procedure coincides with the Gauss-Seidel 

algorithm. 

Theovem 4.1 Let 

f(v) - _*l(v) + I a.|v.I , a. > 0 , 
i=l

 1 

wheve -&~n is coevc-ive3 stvictly convex and C -function. Then the 

vetaxation -pvoceduve convevges to the solution a of (3.5). 

For the proof see [2j . 

REMARK 4.1 Let us modify the relaxation algorithm as follows: 

denote the parameter minimizing f(t) in (4.2) by v. and set 

// -«v n+1 ,~
 N

 n . n+1/2 . , — 

(4.3) v. = (1 - „)v. + wv. , x=l,...,m , 

where 0 < a) < 2 . The algorithm with 00 > 1 is called the succes­

sive over-relaxation (SOR) and that with co < 1 the successive un-

der-relaxation. The aim of introducing the parameter w is to acce­

lerate the convergence. 
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4.2 Problem with constraints 

4.2.1 Relaxation with projection 

Let us suppose that a convex closed set 3C . c R can be writ-

U=l 

where K± = [a i,b ±], 

local, prescribed separately for each coordinate. Let & be a qua­

dratic functional 

^"(v) = JsA(v,v) - (f,v) . 

Denote the parameter minimizing the function f(t) in (4.2) by 

n+1/2 . v. and set 

, , , * n+1 _ Tf. N n . n+1/2 1 
(4.4) v ± = P R [(l-oa)vi + wvi J , 

where P^ is the projection onto K. . 
Ki 1 

Theorem 4.2 Let A(u,v) be a symmetric and positive definite 

bilinear form3 0 < to <2 . Then the procedure (4.4)' converges to the 

solution ah of (3.5). 

For the proof see [2] . 

REMARK 4.2 In particular, Theorem 4.2 applies to the problem 

t 1 , 

REMARK 4.3 The algorithm appears to be the most efficient for 

numerous variational inequalities - cf. [2\. 

REMARK 4.4 The relaxation algc *ithm and the convergence results 

can be extended to a more general class of problems. Let the follo­

wing decomposition hold: 

— N N _ 
Rm = TT V. , dim V . = m . , £ m . = m , 

i = l X xx i = 1 i 
N 

( 4 . 5 ) JC, - TT K«» K. C V. a r e c o n v e x and c l o s e d s u b s e t s , n ± = 1 x x x 
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Then the procedure is called "relaxation by blocks"' Csee [2]). 

REMARK 4.5 In some cases the relaxation algorithm converges 

even for a more general set JO . , provided the initial element v 

is chosen properly. 

4.2.2 Methods of feasible directions 

One of the first methods proposed for convex programming was the 

method of feasible directions Csee [18] , [19] , [3], [4]). 

Assume that 

X
h
 = {V є R

m
|f

±
(v) < 0 , i - 1,.. 

(a.,v) = b., j = m+1, ,n> 

where f. e C are convex functions, a. and \>± are given vectors 

Let v
fl
 e JC. be given. We seek a ("feasible") direction 

p e R such that 

Зoi > 0, v
Q
 +

 a
p £ X

ћ
 1 

^Cv
0
+

a P
) < JTCv

0
) 

г VO < a <_ a 

Then we set v
1
 = v

n
 + a-p , where a.. minimizes the function 

fCa) = -^Cv
0
 + ap) over the interval CO,a] ; then the procedure is 

repeated. 

In case of linear constraints 

f
±
Cv) = Ca^v) - b

jL
 , i = l,...,m , 

the feasible direction p can be determined as follows. Let 

CA) Ca
±
,p) <_ 0 Vi e U < i < m| Ca

±
,v

n
) - b

±
> , 

(aj,p) -- 0 j = m+1, ... ,n , 

CB) M P M < i , 

CC) p minimizes the functional D^Cv
Q ?
p) -= gCp) 

over the set of ail p satisfying (A) and (B). 

The problem (A), (B), (C) belongs to linear programming. 
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Additional requirements, which guarantee the acceleration of the 

convergence and enable us to avoid the "zigzagging", are presented 

in the book [l8]. (See also [l9].) 

4.2.3 Methods of conjugate gradients 

The idea of conjugate gradients can be extended to problems with 

a quadratic functional 3* and linear constraints (cf. [4]). 

4.2.4 Duality methods-search for a saddle point 

Let us suppose that 

r.iß I Ж = ív Є R ш
 (q,Ф(v)) < 0 Vq Є Л} 

h n — 

п
n п>

ш 

where A c R is a cone with the vertex 0 , and $ : R ->- R is 

function. 

EXAMPLE. If 

X
h
 - {ve R

Ш
|f.(v) < 0 , i = 1,2,.. . ,n} 

we can set 

*(v) - {f
x
(v), f 2 ( v ) , . , . . , f

n
(v)} , 

(4.6) A = {q e R
n
|q. > 0 V i > , (q,*(v)) = \ <-i

f
i<

v
> 

i= 1 

It is obvious that 

sup (q, Ф(v)) 

q€Л Г 

+« for v «£X h 

0 for v €.%, 

Thus the (primal) problem to minimize .r(v) over JC, is equi­

valent with: 

(4.7) inf sup {.У(v) + (q, Ф(v)) } 

vєR
m
 qєЛ 

Then q G A is called a Lagrange multiplier and 

•£<v,q) = ^(v) + (q, *(v)) n 

a Lagrang ian . 

The problem 

(4.8) 

10 Pucik, Kufner 

sup inf iu(v,q) 
qєЛ ve=R 
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is called the dual of the problem C4.7). 

If 

i?J(u,p) = min max #(v,q) = max min ̂ (v,q) , 

v£R qeA q€A v«R 

the pair {u,p} is called a saddle point (point of min-max). 

Assume that 

^(v) - 3sA(v,v) - (f,v) , 

A is symmetric, positive definite on R , 

a saddle point exists, 

|ф(u) - ф(v)j |
n
 < C j |u - v| |_ Vu,v € Rm , 

f(v) = (q, $(v)) for any fixed q e R is a convex 

lower semi-continuous function on R 

One method of a search for the saddle point is the algorithm 

of Uzawa : 

p € A chosen , we calculate u , p , u , ... such that 

u m minimizes ^(v) + (pn, $(v)) over v € Rm, m - 0,1,..., 

m + 1 T, / . m . » /• Bi\ v 
p = P

A(P
 + P m

$ ( u )) » 

where P, is the projection of Rn onto A and b €. R is a pro-
A rm 

perly chosen parameter. 

Theorem 4. 3 Under the above assumptions, i t holds 

m 
u -*• u 

provided 

0 K a0 < pm = al » 

where an > a. are suitable parameters and u minimizes & over 

hv #-,0- = а h
). 

For the proof see [2]. 

REMARK 4.5 The algorithm of Uzawa is advantageous if the pro­

jection P is easy to implement (see e.g. the EXAMPLE (4.6)). 
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