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NUMERICAL ASPECTS OF COMPUTATION 
OP PERIODIC AND QUASIPERIODIC SOLUTIONS 

IN SYSTEMS OF PARTIAL DIFFERENTIAL EQUATIONS 

HOLODNIOK M.,KUBlCEK M., 

PRAGUE, Czechoslovakia 

1. Introduction 

In this paper we shall deal with some numerical aspects of compu­

tation of periodic and quasiperiodic solutions of the following system 

of two parabolic equations 
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These equations describe behaviour of a reaction - diffusion system 

(in spatially one-dimensional medium) with Brusselator reaction scheme 

Je.g.1]. Here L is a characteristic dimension of the system, z£ [0,1] is 

dimensionless spatial coordinate, x,y concentrations and t is time. 

For simplicity choose boundary conditions of the Dirichlet type 

x(t.0)=x(t,1)-x y(t,0)=y(t,1)=y, (2) 

where x and y satisfy x2y-(B+1 )x+A=0 and Bx-x2y=0, cf. Eq. (1). We 

consider L as a bifurcation parameter, the values of remaining parame­

ters are chosen: Dx=0.008, Dy=0.004, A=2, B=5.45. In our case are thus 

x=A=2 and y=B/A=2.725. 

In the preceding paper [2] we presented the method of continua­

tion of periodic solutions of Eq. (1), i.e. the way how to construct 

so called solution diagram of periodic solutions. The point of 

formation of a quasiperiodic solution was determined on the basis of 

an analysis of periodic solutions in dependence on L. The development 

of this quasiperiodic solution and its desintegration into a chaotic 

attractor via a cascade of the torus doubling was presented in the 

paper [3] . 
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2. Computation of periodic solutions 

The computation of periodic solutions for the system (1) is based 

on the transformation of the system of PDE's into a large set of ODE's 

by means of the method of lines (semidiscretization). We shall consi­

der two discretizations of spatial derivatives here. Let us denote the 

approximations (Zi -» ih, h - 1/N) 

Xi(t) - x(t,Z±), yi(t) ~y(t, Z i), i =- 0,1,...N. 

Prom the boundary conditions (2) it follows 

(3) 

x0(t) = x, xN(t) = x, y0(t) = y, yN(t) = y (4) 

The most simple discretiZation consists in a replacement of spa­

tial derivatives by the folloving three-point finite difference 

formula (u is x or y): 
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After inserting (5) into Eqs. (1) we obtain a system of 

ODE's (i -- 1,2,...,N-1): 
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Second discretization uses five-point finite-difference for­

mulas (u i s x or y ) : 
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After inserting (7) into Eqs (1) we obtain again a system of 2(N-1) 

ODE's analogously as in the preceding case, cf. Eq.(6)« 

Comparison of accuracy of resulting periodic solutions obtained 

for different N indicates Table 1. There the values of the period T 

and absolute values of two leading characteristic multipliers X
2
 and 

*3 (eigenvalues of the monodromy matrix, X^ = 1 always for an autono­

mous system) are presented. Let us note that the periodic solution 

has in the chosen semidiscretization alltogether 2(N-1) characteristic 

multipliers. We can conclude from the Table that the results for (6) 

and N=40 are comparable with results for (7) and N=20 and that the 

approximatibn (6) gives also for N=20 satisfactory results. 

Table 1: Period T and |^
2 3
I in dependence on N, 

L = 1.338533 (cf. the branch with tori bifurcation 

point T>| in [3]). Periodic solution is stable, ^
2 

and >.3 are mutually complex conjugate. 

a p p r o x i m a t i o n (6) a p p г o x i m a t i o n (7) 

N T U 2 Í 3 I T u23i 
5 

10 

20 

40 

d ive rgence 

3.412599 

3.412613 

3.412666 

0.931 

0.901 

0.892 

d ive rgence 

3.417790 

3.412665 

0.849 

0.890 

3. Computation of quasiperiodic solutions 

The point of invariant torus bifurcation (denoted as T>| in [3] ) 

has been detected on the branch considered for L «-» 1.37. At this 

point a branch of stable quasiperiodic solutions bifurcates. We stu­

died behaviour of trajectories in the neighbourhood of the invariant 

torus by using dynamic simulation of the system (6) for N = 20. The 

visualization of the trajectory will be made by using a trajectory of 
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Pigs 1-3: Poincare maps for 

L = 1.405 
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the Poincare map, i.e. in our case the map from a hyperplane X£=2 into 

the same hyperplane. A projection of this trajectory into the plane 
x10 ~ ^10 d*e* x("t» 0-5) * y (*i 0:5)) i« depicted in Figs 1,2 and 3. 

In all three cases the same initial condition was chosen as the cor­

responding periodic solution perturbed on third decimal place. The 

points of the trajectory of Poincare map No. 500 - 1500, 1500 - 2500 

and 3000 - 4000 are depicted in Fig. 1,2 and 3, respectively. It can 

be concluded from the figures that the attractivity of the invariant 

torus is low. Fig. 3 presents already the "intersection" of the torus 

with the hyperplane xg = 2. The low attractivity of the torus is 

probably caused by a weakly repelling periodic solution in the neig­

hbourhood. This periodic solution has only two multipliers outside the 

unit circle and in absolute value near to unity, cf. Table 2. 

Table 2: Leading 14 multipliers for unstable periodic so­

lution for L =- 1.405, T -= 3.405269. 

Approximation (6), N =- 20. Remaining multipliers 

X-jc, ..., X3g are close to zero, X>j _ 1 . 
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