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DOMAIN OPTIMIZATION 
IN AXISYM.METRIC ELLIPTIC PROBLEMS 

HLAVÁČEK I., PRAGUE, Czechoslovakia 

One often meets elliptic boundary value problems in 3D-domains, 

which are generated by the rotation of a bounded plane domain about 

an axis. Then the natural approach is to use cylindrical coordinates 

( r ^ z ) . If the data are axisymmetric,the problem is reduced to the 

meridional section D. 

Let a part / (oc) of the boundary 2D be optimized,so that a cost 
functional attains its minimum. We shall consider the State Problem 

A y = f in D(*), ( y = y(r,z)), 

where A is a linear elliptic operator with two variants of A,namely: 

i. -E&<'vS> + £<az^L7> 
II. Lamp's system of linear elastostatics. 

Let us denote D(oc) = {(r,z)| 0 < . r < o c ( z ) , 0 < z < l ] , 

f~(oc) the graph of the function oc , (j~ = |(r,0), 0<rr<oc(0)J , 

where cc belongs to the following set of admissible functions 

Uad =|oC€C
(0),l([0,1]) (i.e. Lipschitz function), 

0<oCmin " ° C ( Z ) - ° W l d o c / d z' " C1» 

/ oc2(z) dz = C2 J 

311(3 ^min' ̂ max' C1 ,C2 a r e S i v e n parameters. 

We shall use weak formulations of the State Problems.To this 

end, we introduce weighted Sobolev space wi £(D) with the norm 

^C» 2**) 2*(«) 2J---r«-) , / 2 ,-M l f P f D 
and the space of test functions 

V(D(oc)) = | v€W^1^(D(oc))| jv = 0 on T j , 

where y is the trace operator. Then the State Problem takes the fol­

lowing form: find yeV(D(oc)) such that 

(1) a(oc,y,v) = L(oc,v) V v € V(D(*0). 
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In case I of the single equation 

«<« .--.*> = 4 ^ i ? + a^ s* r ar az' 
L(oc,v) =Jpfcyf v r dr dz +jT g v r dr . 

Here the coefficients a r and a z
 1 are given in the space L°°(D) ,where 

D = (0,<P) X (0,1 ),<f> °^max and there exists a positive constant aQ 
such that a r^ aQ, az "-- aQ holds a.e. in D . Moreover, f € L2 r(D) 
and g£L 2 r(^[) are given functions. 

In case II of elasticity we formulate the State Problem in terms 
of the displacement vector 2L =(u,w) and introduce the following 
space #and bilinear form: 

V(D(oc)) ={(u,w)| u€W(^r(D(oc))n L2)1/r(D(oc)), w f ^ j ^ W ) , 

-ju = p* = 0 on T 2}, 

a(<*,X,v) ̂ [ ^ ( y ^ W ) ^ ( y ^ v ) + ̂ ( y ^ W ) + 2 ^ ^ ) ^(v)] 
D W 

r dr dz, 
where v = (<j,$) and the strain components are 

yv> = f^ , E*(v) = * £z(v) = ̂ , £r2(v) = (^ +£)/2 . 

The stress components. G_i^»G^fG? are given as linear forms in 
terms of the strain components ( by a generalized Hookers law). 
The functional L(oc,v) represents a virtual work of external forces 

L(oc,v) = f [f 0 + f Vjr dr dz + f [g © + g t] r dr , 
JD(<i)r

 A T^A 
where -* r>

fz € L 2 , r ( ^ } and g r f S z fc^-r'H * • 

There exists a unique solution y = y(<*) of the State Problem (1) 
for anyoc^U . in both cases I and II. 

We consider four different types of the cost functionals: 

ji(^,y) = \ - J (y - y d )
2 r dr dz (I) (yd given), 

\ .2^ ...2. 
D(PO 

f (u2+ w*) r dr dz (II) 
JDfr'. 

j2(cc,y) = [ [y(oc(z),z - y j 2 dz (I) (yd 'given) 

rf(u(cc(z),a) - ug)
2+(w(oc(z)) - w g)

2J dz (II) 

d3(«,y) = a(oc,y,y) (I,ID 
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d4<«,y> «/[<•».& - *i>2+ (a z^ - K2)
2]r dr dz (I) 

/ ^ 2 [ £ r 2 ( y ) + 4 ( y ) + £ z ( v ) + 2^rz(y) - J (f r
(y )+£8 (i )+ 

£z(y)) J r dr dz (II) . 

Note that J3(<*,y(*0) = L(oc,y(©<.)) (i.e.,so called compliance) and 
the quadratic form in j- for the case II is proportional to the squa­
re of the von Mises function. 

Now we may formulate the Domain Optimization Problems (I or II) 

(Pi) oC° = arg min Ji(cc,y(cc)) , i^{l,2,3,4) . 

Theorem. There exists at least one solution of the problem (P.) 
for all 1€{1,2,3,4}. 

To define approximate solutions of (P.),we employ standard fi­
nite element spaces Vh, consisting of piecewise linear functions on 
triangulations J^ 0^) , where <-<̂  ,is a piecewise linear approximation 
belonging to U .. 

Instead of the problem (1) we consider the Approximate State Prob­
lems: find yh= yh(<*h) £ V h such that 

a ( v y h ' V = W V Vvh^vh« 
where -^(^JV^) is a suitable approximation of --(ocj1

,vh^ by means of 
a simple numerical integration formula. We arrive at the following 
Approximate Domain Optimization Problems: find 

(ph}i ^ h = arg min i^^V^,)) i€fl,2,3,4}. 

V U a d 

In papers[l], \2[ the following results were proved. If the data 
f,g or fr,fz,gr,gz are regular enough, then every sequence foC^, 
h-*0 , of solutions of the problem (-?h)i> i€ {l ,2,3} , contains a 
subsequence,converging to a function oc uniformly,which appears to 
be a solution of the problem (Pi). 

Moreover,the approximate solutions yuCoO converge also to the 
exact solution y(oc) in a certain sense. 

In the end, a dual finite element approximation of the State 
Problem has been employed in Case I for a generalized cost functional 
d^fciy)* considering slightly different configuration of boundary 
conditions. The details are to be published in the paper £3] . Here 
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we have used the finite element model and the error analysis presen­

ted in the paper [4]. 
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