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THE OPTIMAL CONTROL PROBLEM
IN COEFFICIENTS FOR THE PSEUDOPARABOLIC
VARIATIONAL INEQUALITY

BOCK I.,LOVISEK J.,
BRATISLAVA, Czechoslovakia

We shall deal with an optimal control problem for a pseudopara-
bolic variational inequality with controls appearing in operator
coefficients, right hand sides as well as in convex sets of states.
In addition to [3] the control problem is approximated by a pena-
lized problem enabling us to deduce generalized optimality condi-
tions due to V. Barbu. For simplicity, we consider the time inde-
pendent operators in the left-hand side of the inequality. A simi~
lar problem for the elliptic case was solved in (4], [5].

let U be a Hilbert space, U,q @ set of admissible controls
compact in U 4, V a real Hilbert space with an inner product
(ess), anorm #.Ji , V¥ its dual space with a norm f.l,and the dua-
lity pairing (e,¢) -

Now, we recall the convergence of set and functional sequences
in V via Mosco ([6]) :

Definition 1. A sequence [Kn} of subsets of V converges to
the set KCV , if

i) K contains all weak limits of sequences {uk} uy € K‘n
where {K k} is an arbitrary subsequence of {K

ii} every ve€K is the strong limit of some sequence {vn}, vnekn.

Notation : K = Lim
n-vNKn
Definition 2. A sequence {_jn} of functionals from V into
(-00,00] converges to j : V—>(-o0,00] in V , if epi j =
= Lim epi j, with epi j : {(v,B)€ VxR : j(v) =< B} .

n->e
Notation : j = Lim J .
n-co .

Let us introduce the systems {K(e)} {u (e)} {B(e)} {A (e)},
{Al(e)}, e€ Uad . of convex closed subsets K(e)CV , the elements
u,(e) ¢K(e) , B(e)éV and linear bounded operators Ay (e) € L(V,V"),
i=o0, 1; satisfying the assumptions :

(1) MK(e) # 8
ecU 5
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2) e +e in U => K(e) = Lim K(on)

n n-co
3) (Ai(e)u,v>= (Ai(e)v,u> for all u,vevV
(4)  (Aj(edu,ud = agllul® , o > 0 . for all ueV
i) ag(e )+ 4;(e) in L(V,V")
(5) e ~>e in U=> { ii) uo(en)-—»uo(e) in Vv

iii) B(e )—>B(e) in .

Further, let fé€ ct([o,T] sV*). Using the method of penalization
(see [3]) the following thsorem can be verified.

Theorem 1. There exists for every eeU., the unique solution
u(e) := u(.,e)€ W%([O,T],V) of the initihl value problem

(6) u(t,e)e K(e) for all te€ [0,T] ,
(M (A(eduf(t,e) + A(elult,e), v - u(t,e)> =
{£(t) + B(e),v - u(t,e)Y for all veK(e), te[0,T] ,
(8) u(0,e) = u (e) .
Now, we link with (6), (7), (8) a minimum problem

(3) J(u(e),e) = min J(u(e),e) ,
eeUad

where a functional J : W%([O,T],V)x U—+R fulfils the assumption

(10) u_—>u, e

n ~e = J(u,e) = lim inf J(u ,e,)

n n->co

Theorem 2. There exists at least one solution 5‘“31 of the
Optimal control problem (6) - (9).

The state inequality (7) can be rewritten in a form
(1) (Agleluf(t,e) + Aj(elu(t,e),v - ult,e)+

*q)(e,v) -¢(e,u(t,e)) > (f(t) + B(e), v - u(t,e))
for all e€ Uy, , veV , té {o,T] ,

where
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0, if vé&K(e)

(11) Ple,v) =

+e0, if véK(e) .

We regularize the functional (P by the system of convex Frechet
differentiable functionals @%(e,.) : V=R fulfilling the condi-
tions :

(12) PE(e,v) = ~c (lIvi+ 1) for all £> 0 , e€ Uy, veV ,

(13) %im ¢fe,v) = P(e,v) for all €U 4, VeV ,
-0
(14) e e in U=> P(e,.) = Lin e _,.) ,
n n-»oo n
(15) e,~e in U, £E~0=> Ple,.) = Lin ¢€“(en,.) ,
n-vco

16)  I52P%(e,uy) - 329Ee,uxl, = 1y (E)fluy-u,
for all £ > 0 , e€U, 4 : uysun €V,

7) llg—?l-(P"'(e,vo)!Lis M, for any v €V and all e€U,,,E> 0.

Now, for each £ > O we consider the approximating

Problem P, . To find a couple Leg ,u,:]eue such that

(18)  Jleg,ug) + le &IZ = min _ [J(e,u) + 3le-812 1,
[e,u e.ue

where
u€={[e,u]euadx W%([O,T],V) : u(0) = ug(e) ,

19)
Ay (edu(t) + A (elult) + 52 PE(e,u) = £(t) + Be)} .

In a similar way as in [4] for the elliptic case the following
theorem can be verified :

Theorem 3. There exists for every € > O at least one optimal pair
[ec ,ue]eue for the Problem Pg. If 1lim En = 0, then there exists
a subsequence{ek} of {Sn} such that 2™

(20) ee —>¢& in U
K

(21)  ug =@ = u(® in wi([0,T],V) ,
x

where @ is a solution of the Optimal control problem (6) - (9).
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If we add some differentiability assumptions and if B : u->v¥
is the linear bounded operator, then it is possible to derive the
optimality system for the Problem P .

Theorem 4. If [ec,uE] is the optimal pair for the Problem B,
then there exists P € WZ([O T],V) satisfying the system

(22)  ajleglul(t) + A (egdug(t) + s2PElec,uc(t)) = £(t) + Bleg)
(23) ue(0) = u (eg)
» . 2% e L
(24)  -Aj(ec)pg(t) + A (eg)pg(t) + 5:24> (eeug)pe (1) = Hieg u,)
(25) pe(T) = 0
(26) <B pe(t) + g%(eg,ue) e-eé)U + (e -E,e-ee)U

> ([ Fakee) (e-eg) lug(t) + [ Bo(ee) (emeg) Jug(t) +

5—3—%@ (es,ug(t))](e-ec) , pe(t)> for all eeUgy .

It can be verified that the set {pc}ls bounded in W ([0 Tl,V) .
Then there exists a sequence {Ek} Ek—* O. and Po such that

(an Pe —>Po in W3([0,7],V)

A function p, can be considered as the generalized adjoint state
to the system (6) - (9).
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