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SUBHARMONIC BIFURCATION 
IN EQUIVARIANT SYSTEMS 

VANDERBAUWHEDE A., GENT. Belgium 

1. INTRODUCTION. We know from equivariant bifurcation theory (see e.g. [A] or [6]) 

that the presence of symmetry can considerably change the typical bifurcation beha­

viour of a system. In th is note we discuss a problem - namely subharmonic bifurca­

tion - where the presence of symmetry not only leads to different answers, but 

forces us even to ask different ouestions. 

Consider the different ial equation 

x = f(x,X) , (1 ) 

with xGffin, x G3R (the parameter space), and f : RnxlRk -> ]Rn smooth. Suppose that 

(1) has for X=0 a periodic solution xn(t), with minimal period Tn>0. The problem of 

subharmonic bifurcation is then the following : describe, for some given q^2 and for 

all X near zero, all periodic solutions of (1) with minimal period near qTn and with 

orbit nearby Kn := {xn(t) | t
 e IR}. Such solutions can be found in all neighborhoods 

of K only if xn(t) has some Floquet multiplier M with M = 1 and M ^ 1 for q' < q. 

Generically period-doubling (i.e. the case q=2) can happen in one-parameter problems 

(k=l), while subharmonic bifurcation with q^3 requires two parameters (k=2) and 

leads to so-calledArnol1 d tongues; these are thin horn-like regions in parameter 

space corresponding to parameter values for which (1) has a subharmonic s o l u t i o n . 

The standard method to study subharmonic bifurcation consists in finding q-periodic 

points of a Poincare map associated to xn(t) (see [1]). 

Now suppose that our system (1) is symmetric, i.e. there exists a compact group 

T c L0Rn) such that 

f(YX,X) = Yf(x,X) , VY e T ; (2) 

we also say that (1) is T-equivariant. Without loss of generality we may assume that 

T c 0(n); moreover, T forms a Lie group, and we will denote by L(l") its Lie algebra, 

i.e. the tangent space to T at the identity. An immediate consequence of (2) is that 

instead of just a periodic orbit Kn we now have a compact invariant manifold 

MQ := {YXQ(t) | t GIR, Y e T} , (3) 

foliated with periodic orbits of (l),_n; this manifold is invariant under both the 

flow and the group action. It is then clear that the questions we should ask are the 

following : 
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(i) can we continue the manifold MQ, i.e. does there exist a family of compact 

manifolds M,, depending in some sense smoothly on X, coinciding with Mn for 

X=0, and such that M. is invariant under the group action of r and under the 

flow of (1)A? 

(ii) are there bifurcations of such manifolds? 

(iii) if there are bifurcations, how does the dimension of the manifolds and the 

flow on them change? 

The following (intuitive) example shows that this is not the same as asking for the 

continuation and the bifurcations of the periodic orbit Kfi. 

Suppose T a S0(2) and f(x,X) = fQ(x) + Xf (x), where fQ and f are r-equivariant, 

and such that f (x) is for each x G ]R tangent to the group orbit rx. Suppose fn has 

a periodic orbit K Q such that Mfi is a 2-torus. Then Mn is still invariant for X^O, 

but the orbits of f, on MQ will either not be periodic at all, or periodic with a 

very large period (if X is small). We see that although we can continue the manifold 

Mn, we cannot continue the periodic orbit Kn. 

2. A POINCARE MAP. We will now combine some ideas of Chossat and Golubitsky [2] with 

a construction introduced by Fiedler [3] to obtain a Poincare map which forms the 

basic tool for studying the bifurcation problem described above. This Poincare map 

will reflect the symmetry of the periodic orbit Kn, which we can describe as follows 

(see [3]). 

We call 

HQ := {1 e r^(Kn)=Kn} (4) 

the onbitaJL AymmeXsiy of K_, and 

KQ :* h e r | YX0=XQ} (5) 

the spatial Aymmztny of K0. In (5) xn is any point of K Q; the definition is indepen­

dent of the choice of xn € \c . It is easy to see that Kfi is a normal subgroup of Hn, 

and that HQ/KQ is cyclic, i.e. we have either HQ/K0 = S or HQ/K0 =7L^ for some m^l. 

If Hn/Kn a S then we say that Kfi corresponds to a tiotattng wave, solution; in that 

case Mn consists of just one single group orbit, i.e. MQ = rxQ, and we say that xn 

is a relative equilibrium. For more information on this case we refer to recent work 

of Krupa [5] (see also [7]). Here we will restrict to the case where HQ/K0 sZZm for 

some m£l; we put xQ := xQ(0), and we fix S £ L such that xn(t+Tn/m) = 6xQ(t). We 

have then KQ = Fix(xQ), S K ^ "
1 = KQ and 6

m e KQ. 

The tangent space at xn to Mfi is given by 

T_Mn = span{x0(0)} © {nxQ | r,eL(r)} . (6) 

We define YQ := ( T ^ ) 1 and SQ := {xn+yn | yQ € YQ}. Remark that T_ MQ, YQ and SQ 

When we start at a point x = xn+yn e Sn (yn e Yn) 
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sufficiently close to xQ then the flow <J>(t;x,A) of (1) will in general not intersect 

Sn after some time near TQ, but it will intersect SQ modulo a AymmeAxy opQAOtOK, 

i.e. it will intersect TSn. This is the basic idea behind the Kn-equivariant Poin-
k 

care map II : Y * IR •* Yn which we construct as follows. 

The group T acts on L(r ) via the adjoint action (Y,r.) +• \nY~ ; using this action we 

see that L(K0) is KQ-invariant, and hence there exists a Kn-invariant subspace U of 

L(r) such that L(~) = L(KQ) © U. A simple application of the implicit function theo­

rem then shows that for each sufficiently small (yn»*)
 e Yn x _ R there exists a 

unique (T,n) = (T(yQ,A) ,fj(yn,A)) G ]RxU near (TQ,0) such that e"
n(t>(T ;x0+yn,A) G SQ. 

We define then 

n(y0.X) := e
-fi(y<"X)*(?(y0)A),y0>A) - xQ ; (7) 

It is easy to check that for each a G Kn we have 

*(ay0>*) = ̂ (y0>*) , ~(ayn,A) = cfi(yn,A)o~ 

and n ( a y 0 , A ) = a n ( y 0 , A ) , (8 ) 

i.e. II is Kn~equivariant. We have n ( 0 , 0 ) = 0, and the eigenvalues of D.II(0,0) will 

be the Floquet multipliers of xn(t) which are not forced to be 1 by the flow and 

the symmetry. For example, if the multiplicity of 1 as a multiplier of xQ(t) equals 

dim T_. Mn = 1 + dim U, then 1 will not be an eigenvalue of D.II(0,0) and II will have 
XQ u l __ 

for each sufficiently small A a unique Kn~invariant fixed point yfi(A), corresponding 

to a continuation of Mft. 

When m>l then II has a more detailed structure which not only reflects the spatial 

symmetry Kfi but also the orbital symmetry Hfi of KQ. TO see this we set Y. := 6
J(YQ) 

and Sj := 6^(Sn) for j = 0,1,...,m. Each of the Y. and S. is Kn*invariant, since 

5Kn6~l = Kn, while Y = Yrt and S = Sn, since 6 e Kn. In a similar way as above one 

0 0* m O m y k 

defines then Kn~equivariant mappings fi. : Y.xIR + Y. . (j=0,l,...,m-l), correspon­

ding to "partial" Poincare maps. One can then easily check (see [3]) that n.,i -

611.6"1, and when we define nQ : YQxIR
k -* YQ by nQ := <-'

1fi0, then 

n = 6mnn
m . (9) 

The mapping IL is not Kn-equivariant in the strict sense, but satisfies 

n0(ayQ,A) = (6"
1a6)n0(yQ,A) , Va <= KQ . (10) 

That means : nn is equivariant with respect to two different actions of KQ; it is 

however important to notice that the orbits of both actions coincide. 

The bifurcation problem described in the introduction now reduces to the following : 

study the bifurcations from {0} of compact manifolds in YQ which are invariant under 

II (or nn) and under the group action of Kn. Subharmonic bifurcation means in this 

context the bifurcation from {0} of KQ-orbits which are invariant under some q-th 
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correspond to a "torus-doubling". In general the flow on the bifurcating invariant 

manifolds will not be periodic, but quasi-periodic;- therefore we should rather talk 

about quasi-subharmonic bifurcation. 

In certain cases one can obtain sufficient conditions for such bifurcations by con­

sidering points with certain isotropy properties (see [ 2 ] ) . For example, if m=l and 

the multiplier 1 of K~ has minimal multiplicity (given by 1 + dim U), then n=nn (we 

take 6=Id ) , and we may without loss of generality assume that n(0,X)=0 for all X. 

Modulo some generically satisfied transversality conditions one has then the follo­

wing : 

( i ) if -1 is a Kn~simple multiplier of K_ (see [4] for the d e f i n i t i o n ) , with eigen-

space Z, and if k=l, then there corresponds a quasi-period-doubling to each 

isotropy subgroup I of KQ such that dim Z = 1 ; 

( i i ) let [i € (C be a K-.-sin.ple multiplier of K~ such that u -1 for some q£3; on the 

corresponding (complex) eigenspace Z we define an action of Kfix 7L by 

( a , j ) . z = uja.z , V(o,j) e KQxZZq ; (11) 

(we takeZ :=2JqZZ ) ; if k=2 then there corresponds a quasi-q-harmonic bifur-

cation to each isotropy subgroup Z of Kfix 2Z such that diitL, Z = 1; to each 

such bifurcation there corresponds an Arnol'd tongue in parameter space. 

We will give more details and examples in a forthcoming paper. 
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