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LINEAR PERTURBATIONS 
OF DIFFERENTIAL SYSTEMS 
WITH CONSTANT MATRICES 

S l M S A J. , B R N O , Czechoslovakia 

W. F. Trench ([4], [5], [6]) and the author ([2], [3]) established recently mild sufficient conditions 

for a scalar linear differential equation 

n 

(i) f(n) = X > * + Pk(t)]v<n-» (t e [o, oo)) 
*=i 

to have solutions which behave for large t like solutions of the constant coefficient equation 

v(n) = S^akV(n-k)^ 

fc=l 

These results are considerable extensions of the classical theorems (cf. [1, Chapter X]), because 

they involve no smallness conditions on p2> P3>---,Pn (except pi) which require the absolute 

convergence of improper integrals that occur (see Theorem 1 below). Since (1 ) is convertible into 

a linear differential system 

(2) x' = (A + P(t))x , 

with n x n matrices A and P given by 

(3) A = 

4 
\an 

0 0 
û n - 1 <-n-2 

l' 
1 

and P = 

0 
0 

0 0 
<Pn P n - l 

°\ 
0 

the following question arises: Is it possible to extend the above mentioned results concerning (1) 

to a wider class of systems (2)? Our goal is to show (see Theorem 2) tha t such an extension is 

possible when some k rows of the perturbation matrix P in (2) vanish as t —*• oo (notice that P 

in (3) has the first (n — 1) rows zero). We will give sufficient conditions for (2) with a constant 

matrix A to have a solution x0 satisfying 

(4) x0(t) = ceXot + 0(etlt<l>(t)) as t -> oo, 

with a given function <f>< c G C n , A0 £ C and f.i £ R such tha t 

(5) Ac = XQc and p = ReA0 — (i > 0 . 

It is convenient to collect some technical conditions on A, u and <f> in the following 
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ASSUMPTION A. Let 

det(AI - A) = (A - A0)
n°(A - Axf1 • • • (A - Arf)

n-, 

where \j are distinct (0 < j < d) and n0 + nt -\ h n& == n. For a given a € R we will write 

j e J+ or j E Jo if n > Re A, or fi = ReAj, respectively. If Jo ^ 0, suppose that 

(6) rank^ I - A) = n - n_, for any j G J0. 

(If A is in Frobenius form (3), then (6) means that rij = 1.) Let </> be continuous, positive and 

nonincreasing on [a, oo) for some a > 0. If J+ ^ 0, suppose that c6i<j>(t) is nondecreasing on 

[a, oo) for some 6,0 < 6 < min[/i — ReAj : j 6 J+}. 

It is to be understood below that improper integrals appearing in hypotheses are assumed to 

converge, and that the convergence may be conditional, unless the integrand is nonnegative. The 

symbols "O" and "o" refer to behavior as * —> oo. The result of [5] is the following 

THEOREM 1. Suppose that A, c, A0, p and \i are as in (3) and (5) and that Assumption A holds. 

Given continuous scalar functions p\, p2,..., pn, define 

n 

/(<) = E A » " _ t p ^ 
*=i 

and suppose that 

(7) J°°f(s)e>"ds = 0(4>(t)), 

(8) J°° f(s)e<X°-Xi)'ds = 0(<t>(t)) U € Jo), 

(9) J°°\Pi(s)\<l>(s)ds=o(<t>(t)) 

and 

ф(s)ds = o(ф(t)) (2<k<n). (io) /°° |/°° p / f c ( r ) < i r 

Then (1) has a solution v0(t) such that 

(11) v(

0

r)(t) = AJeAo* + O(e"V(0) > 0 < r < n - 1. 

We now announce our result. Having fixed an integer k (1 < k < n), for any matrix P t= C** 

and any vector z G C we will write 

' - ( Ä Й ) - * - ( 5 ) -
where x\ 6 C*, x2 c= Cn~*, and the blocks Pn, P12, P21, P22 are matrices of sizes k x k, k x (n - fc), 

(n-k)x k and (n - k) x (n - fc), respectively. 
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THEOREM 2. Suppose that A, c, A0, p and /. are as in (5) and that Assumption A holds. Suppose-

also that P(t) is locally integrable on [0, oo), 

(12) PiMc1+P12(t)c2 = 0(e-'"<Kt)) a-e. 

(13) P„(t) = o(l) a.e. 0 = 1,2) 

and that the following conditions are satisfied. 

(i)IfJo = 0, then 

(14) J°°(P2i(s)c1 + P22(s)c2)ds = 0 ( e - ' V « ) , 

(15) supa+s-t)"1!! rF2i(r)dr||=o(l) 
a>t Jt 

and 

(16) sup(l + s - ty1 f ||P22(r)||< (̂r)dr = o(</>(t)) -
»>t Jt 

(ii) If J0 ?- 0, then 

(17) / P(s)ce(A°-A')*ds = 0(^(t)) foranyJGJo, 

(180 J°° \\Pi2(s)U(s)ds = oMt)) (» = 1,2) 

and 

(19<) J~Vif*Pli(T)dTW)*»-o(Ut)) (•"--,-). 

Then (2) has a soiution £<> satisfying (4). 

The proof of Theorem 2 is based on the simple Banach contraction principle. The solution xo 

can be found in the form Xo(t) = ceXot + yo(t), where yo is a fixed point of the affine map 

Cy = u[Py]-ru[P(t)ceXQt] 

and u[.] is an operator defined in the following 

LEMMA 1. Suppose that Assumption A holds and that b = b(t) is a locally integrable n-vector 

function which satisfies the foUowing conditions (i) and (ii) with a constant Kb > 0. 

ft) If Jo = 0, then 

sup(l + s - t)'l\\ / b(T)e-"rdr\\ < Kb<f>(t) (t0<t< oo) 
8>t Jt 
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for some w G C such that Reu> = fi. 

(ii) If J0 7-0, then 

>// &(s)e-A> j ds | | < Kb<j>(t) (t0 < t < oo , j e Jo) -

Then there exists a constant KA,U such that the system 

u' = Au + b(t) 

has a solution u = u[6](t) which is linear in b and satisfies 

\\u[b](t)\\ < KAtUKbe^(t) (t0<t<oo). 

The detailed proofs of Theorem 2 and Lemma 1 are rather complicated and so they will be 

published elsewhere. We finish here by remarking that Theorem 2 (with k = 1 and zero matrices 

Pn, P12) is an improvement of Theorem 1 . In fact, if A and P are as in (3), 

P21 = ( P n , P n - i , - . . , P 2 ) , P22 = (Pi) and c = (1 , A 0 , . . . , A j " 1 ) , 

then (12), (13), ( 1 8 0 and ( 1 9 0 hold automatically, (7) implies (14), (10) implies (15), (9) implies 

(16), while the pairs of conditions (8)&(17) or (9)&(182) or (10)&(192) are equivalent. 
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