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ON THE MATHEMATICAL A N D NUMERICAL MODELLING 
OF ELECTRON BEAMS 

RAVIART P.-A., PALAISEAU, France 

1. Introduction 

Electron guns, or more generally charged particle injectors, are of crucial importance in the 
technology of particle accelerators, free electron lasers, microwave tubes,... They are required to produce 
relativistic electron beams of very high quality : high current and low emittance. Numerical simulations are 
now currently used in the design of electron guns : the most sophisticated mathematical models to solve are 
based on the time-dependent relativistic Vlasov-Maxwell system of equations in complex three-dimensional 
geometries; If we denote by Q, c 1R the geometric domain under consideration, by T its boundary and n 
the unit outward normal to T, the problem consists in finding functions f=f(x,p,t), E=E(x,t), B=B(x,t) 
solutions of 

(IT) -^ + v.Vxf + F.Vpf = 0, xeCl, p e E3, t > 0 
at 

and 
(1.2) c - 2 ^ i . V x B = - n o J 

-)T» 

(1.3) -f- + V x E = 0 
dt 

(1.4) V . E = e-0
1p 

(1.5) V . B = 0 , x e Q, t>0 . 

In (1.1)-(1.5), f is the electron distribution function, E the electric field, B the magnetic field and 
(1.6) v = c(p2/+m2c2)-1/2p, p=|p | 

(1.7) F = -e(E + v x B ) 

(1-8) p = -e I fdp, J = -e I vfdp. 

Concerning the boundary conditions, we assume that on a part TQ of T (the cathode) electron emission 

occurs while on T1 = r - r o the electrons are free to leave the domain, i.e., we prescribe 

g(x,p,t), p.n < 0, x e r 0 
(1.9) f(x,p,t)= t 

0, p.n < 0, x e T j 
for some given emission function g. On the other hand, we assume for simplicity that V is a perfect 
conductor so that 
(HO) E x n = 0 onT, t>0 . 

Adding to the equations (l.l)-(l.lO) natural initial conditions leads to a problem whose 
solution presents interesting difficulties of both mathematical and numerical nature. We describe here some 
new results in these two directions. 
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2. The plane diode 

The mathematical analysis of the above system of equations is in fact far from being well 
understood. Hence we restrict ourselves to the simplest possible model: the stationary Vlasov-Poisson 
equations for a plane diode 

(21) v I + & s r f r ° - X6(0>L)- V6R 

(2.2) f(0,v) = g(v), v > 0 , f(L,v) = 0, v < 0 

-----ne, n= I fdv, 
єo J 

(2.3) ---ţ = --- ne, n = I fdv, x є (0,L) 
dx2 в~ 

(2.4) <K0) =- 0, <KL) = <t>L. 

Here the cathode is located at the point x = 0 and the magnetic effects have been neglected so that 

E = ------ where <|> is the electric potential. One can prove (cf. [4]). 

Theorem 1. The following properties hold : 

(i) Assume that the function g satisfies for all v > 0 

(2.5) 0 £ g(v) <; c(l+v)"\ X > 1. 

Then problem (2.1)-(2.4) has at least one solution. 

(ii) Uniqueness holds in the class of positive potential solutions. 

(Hi) lf% is decreasing on ]0,<*>[, the solution is unique. 

In practice, we have 

e2 = (2e(()L)-1mv2
h«l, v2

A= j g(v)dv | v2g(v)dv 

and there exists in the neighborhood of the cathode a boundary layer of width 0(e3/2) in which a part of the 
emitted electrons return to the cathode. A proper scaling of the Vlasov-Poisson equations leads to the 
singular perbutation problem: 

'.H.&-* •••* -' , 

f*(Pfv) = r ^ v ) , v>0, 1̂ (1̂ ) = 0, v<0 
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- Ц - = ne, n*= | Ѓdv, x є (0,1) - ne, nє = I 

-*« = ] 
ф£(0) = 0, ф£(1)=1. 

Setting ig = I vg(v)dv, we notice that gc(v) = e"2g(e_1v) converges formally to i v_15(v) which is not a well 

defined distribution. Concerning the convergence of (fE,(()e) towards the solution of a reduced problem, we 
have (cf. [3]). 

Theorem 2. Assume that g is a decreasing function. Then, as E-»0 , f* -> f°m «Alb([0,l] x R) 

weak-star, <J>e -> ty° in C°([0A]) strongly where (f°,<t>°) is a distributional solution of the Vlasov-Poisson 
equations which satisfies 

f°(x,v) = i0((t>0(x))1/2 6(v-<|)(x)1/2), i° = min(igf|) 

¥$- = i° (t>o(x)"1/2, (J>°(0) = 0, (|>0(1) = 1. 
dx2 

3. A coupled particle-finite element method 

For solving numerically the Vlasov-Maxwell equations, we propose a coupled particle-finite 
element method. We approximate the electron distribution function f by a linear combination of Dirac 
measures in the phase-space 

(3.1) i*(x,p,t) = I cck 6(x-xk(t)) 6(p-pk(t)), 
k 

where 

(3.2) ^ = vk> - £ - F ( x k . p k . t ) . 

Hence, p and J are approximated by 

(3.3) ph(x,t) = -e X ctk 6(x-xk(t)), Jh(x,t) = -e X «kvk 6(x-xk(t)). 
k k 

On the other hand, Maxwell equations are solved by means of a finite element method using an unstructured 
mesh. In fact, the equations (1.2)-(1.4) lead to a well-posed problem if and only if the following charge 
conservation equation holds 

(3.4) §T + V ' J = a 

Unfortunately, the computed charge and current densities do not satisfy the equation (3.4) at least in 
general. Hence, we need to introduce a pseudo-displacement current -V(j> in (1.2) which becomes 
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(3.5) c--|^--V<t>]-VxB = - M 

together with the boundary condition 

(3.6) $ = 0 on T, t>0. 

Theorem 3. Assume that p and J are given. Then, the problem (1.3), (1.4), (1.5), (3.4) with the 
boundary conditions (1.10), (3.5) and natural initial conditions is well posed. 

One can now solve this new problem by using a standard finite element method. For 
instance, assuming for simplicity that the problem is two-dimensional, we approximate B2 = Bz(x,y) ; 

<j> = <|>(x,y) by continuous piecewise linear functions and E = (Ex, E ) by piecewise constant functions on a 
triangular mesh. 

It remains to couple the particle method and the finite element method by defining continuous 
representations of ph and Jh from their particle representations (3.3) and also to derive a particle 
discretization of the boundary condition (1.9). For a thorough discussion of the method in the 
axisymmetric case and various numerical tests, we refer to [1]. See also [2] for a review on the numerical 
simulation of kinetic equations by particle methods. 
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