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'THE GLOBAL SOLVABILITY
TO THE EQUATIONS OF MOTION OF VISCOUS GAS
WITH AN ARTIFICIAL VISCOSITY

NEUSTUPA J., PRAGUE, Czechoslovakia

It is known that weak solutions to the Navier-Stokes equations for
incompressible liquid exist globally in time (due to the work of E.Hopf
from the year 1951). In spite of a lot of attempts, it remains an open
question wheather the same may be said about the Navier-Stokes equa-
tions for compressible fluid. Especially the variability of density is a
source of troubles: eventual "very small” as well as "very large” values
of density together with insufficient informations about its regularity
make impossible to follow the approach of E.Hopf. Failures lead often
as far as to doubts about the systém of the Navier-Stokes equations
as about a convenient model of motion of a viscous compressible fluid.

We shall deal with the following system of equations:

(1) Cey)y + Couyyy); = -ple), + uly ;+ %u“,] + LfG) ;)
(i=1,2,3) )

(2) g, + ley), = fla),

in @, = Qx(0,7T). We consider boundary conditions

- - 2
(3) =0 (1=1,2,3), —=flp)

u,l =0
32x10,7) 32x10,T)

(where v is an outer normal vector) and initial conditions
(4 o, =e. lew)|  =euy (i=1,2,3).

The term on the right hand side of (2) represents a so called artificial
viscosity. We assume that there exist §>0, ¢, >0, ¢, >¢,, 0;>¢,, (, >0, ..
.., Cg >0 so that p and f are twice continuously differentiable and non-
decreasing functions on <0, +=) such that ple) s C,e for ¢e€<0,¢,>, f=20
on <0,¢,> and ¢ p"(e) € C, p'e), ple) < Cy FLA™3, Flo) 2,02, o Filo)
s C5 flp), o) s Cg gs for g 2 ¢,. These conditions are satisfied for exam-
ple if p(g)=const. p* (where 1s «<3) for ¢ 20 and f(g)=const.(p - 92)3 for
e 20, Q is supposed to be a bounded domain in R?® with a sufficiently
smooth boundary. T is a given positive number. For each t ¢ (0,T), the
artificial viscosity is acting only on a set Q;={xeQ; o(x,t)> QZ). Since
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the ammount of mass in Q is constant (=M), we can derive: meas(Q\"_) <
< M/¢,. Thus the artificial viscosity can act at most on a set as small as
we want if we choose e, large enough. The system (1),(2) coincides with
the system of the Navier-Stokes equations for barotropic fluid and the
continuity equation in the range of "reasonable values” of density (i.e.
the values < 92)'

The problem (1)-(4) enables to derive various apriori estimates. The
most important one (which may be called an energy inequality in accor-
dance with the "incompressible case”) has the form

T
(5) ilz-gu,uiltdx + JQ(Q)lt dx “+ ‘ofﬂfu[u,'lu“;%(ui’])z]dxdt +

T
+ ffg(g)'] gle); dx dt < J‘%gouo,uo,dx + fQ(go) dx + const.
02 ! Q a

(for a.a. te(0,7T)), where Q(g) = max{P(p);0)}, Plg) = g.l"gp(c)/d"’da
(for ¢>0), P(0)=0, glg) = fogl:p'(u)- f'(6)/51"2ds. We can obtain the in-
equality (5) if we multiply the i-th equation in (1) bv y;, integrate bv
parts and use the equation (2) and the relation ¢ P'(g) - Plg) = -plg)
in an appropriate way. Moreover, by means of a similar technics, im-
bedding theorems, Gronwall inequality, etc., it can be shown, that

(6) IGIV < const., (7) I|9U"g < const., (8) |lf(9)|l73 s const.,
1 . 2

where 9, = 5(0,T;+w,2; Lg(Q), HT(Q)), 7,= 7(0,T;2,1; L2203, H3 (@), v,=
= 9(0,7;2,1; H'(Q),H™3(Q)), U = (u,, up,uy) and the constants on the right
hand sides of (6)-(8) depend only on T, Q, ¢, and U, = (ug,, Ugp, Ugy). If
X, and X, are Banach spaces then J(0,T; «,, a,; X,, X;) denotes the space
of functions v e L, (=L°L°(0.T;Xo)) such that v'el, (= La'(O.T;X1)) , with
the norm equal to |lv II'-o + IIv'II,_' . LE(Qj is tehe Orlitz space corresponding
to the Young function G(p) = max{(Q(g); I; f(o) do}.

We want to prove the global existence of a weak solution to the
problem (1)-(4). It will be a couple of functions pe Lw(O,T;LG(m). Us
= (uy,up,uy) € L2(0,T; Hy(Q)%) such that ¢ 20, flg) e L2(0,T; H'(Q)),

T

(9) afbf[eu, et eUU P+ flelu, ;¢,;,+ fley T ple) g, -
S WU e TRy e, dxdt = - -s[ Qoi (i) @x

for all ¢ = (9,,9,,93) € C¥(Q;)® such that ¢, =0 (i=1,

|aszx|o,r|i 0. 'P’Ic.o
2,3) and

;
(10) [ [leb,+ ey, - flo); ¢,1dxdt = -{go-(¢|ho)dx
0 Q

for all ¢ ¢ C¥(Q;) such that ¥],.," O
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It is necessary to construct a sequence of approximations at first.
That is why we formulate a problem which approximates (1)-(4) in a
convenient way:
11y Cey), + (ouy), = -E(Q).,. +uly ;¢ ‘EUJ.H] + DfCe) iy + % e,y ]

(i=1.2,3; in Q;),

(12) ¢, + \-QL’;}).J- = f(g)'”4lne_” (in Q; ),

(13)

= | = 2 1
=0 (i=12,3), av[f(g)fﬁgla 0,

u R =
Nagwio. 2,x10,7)

(14) QI _°= o, (in Qp), (oy) reo - QYo (i =1,2,3; in Q),

where Q = {xe R3; dist(x,Q) < ln' Qr,=Q,x(0,T) and ~ denotes the re-

gularization defined in a2 following way:
Cix,6) = [ wlnlx-y)) Cly,t) dy
gIl

(for { defined a.e. in Q,.n and such that {(.,t) e L‘(Qn) for a.a. t € (0,T);
© is a fixed function from C%(R%) such that supp w = {xe R3 ixis1}, tne
integral of w over R3 is equal to 1 and w(x) 2 O for all x € R3.) It may be
shown that the problem (11)-(14) has a weak solution (which will be
denoted by U"= (uf,ug,ug), ¢" in the following). It is rather complica-
ted from the technical point of view, the used apparatus involves the
method of a discretization in time, theory of nonlinear elliptic and pa-
rabolic equations, fixed point theorems, etc. The details may be found
in [2]. The same estimates as (5)-(8) may be derived for the aooroxi-

mations U", o".

Thus, we shall refer to (5)-(8) as to estimates related
to these approximations.

It follows from (5)-(8) and imbeddings 7, s¢ (20, 7; H7 N, Jyea
sa (2(0,T; H Y (@), Jea LZ(QT) that there exist subsequAnces of {(U"},
("} (denoted by {U"}, {g") again) and functions U, g, V,f so that U"—
—~U in (30, T; Hi(@)Y), "% g in 9, "—¢ in L2(0,T;H' (@), Q"U"—=V
in (2(0,7; (@)Y, f(g" =~ f in (2(Q;). It is possible to show that V=
=eU, p20 and f= f(g). Moreover, we have: J"—= U in Lz(O,T;HJ(Q)s).

The functions U”", o" satisfy the integral relations analogous to (9},
(10). The convergences mentioned above enable to pass to limits (con-
taining U, ¢ instead of U”, ¢", integrals over Q instead of over Q, and
having the regularization ~ vanished) in all terms in these integral

relations except the term
T

(15) [ [ B(e™ ¢, , dx dt.
o2, !

It is possible to pass to the limit also in this term if the condition
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(16) p(Q) C; e (for an appropriate constant C,>0 and Qe <O,Q1)')

is satisfied. Thus, we can see that U, ¢ représgnt the weak solution to
the problem (1)-(4) and we can state:

Theorem. Let the condition (16) be fulfilled and let 0, € La(Q), 0, 2 0
a.e. inQ, Uy= (u°1,u02,u03) e L12(Q)3. Then there exists a weak solution U =
s (uy,uy,us), @ to the problem (1) -(4).

It ig possible to show that the weak solution U, ¢ from the last
theorem satisfies the energy inequality (5).

Without the condition (16), we are able to prove the solvability of
the problem (1)-(4) in the following sense: There exist U = (u,,uz,ug) €
< (2(0,T; HO(Q):’) and a measurable function [x,t] -ov[x ¢7 Which assigns
to a.e. [x,t]e Q; a nonnegative Radon measure v, . on <0,+w) so that
this measure has a so called "unit mass" and if we put

+ +
elx,t) = fmx UPRICIOR Iix,t) = fmp()\) Vi, p2(dN)
° °
then e L®(0,T;L,(Q)), flo) e L?(0,T; H'(Q)) and the relations (9), (10)
are _satisfied (with II instead of p(g) in (9)). We can obtain this re-
sult if we use the ideas of L.Tartar [3] and DiPerna [11.

The mentioned results may be generalized for the case of a nonze-

ro body force and nonhomogeneous boundary conditions.
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