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LOCAL SUPERCONVERGENCE ANALYSIS
OF THE APPROXIMATE BOUNDARY-FLUX CALCULATION

LAZAROYV R.D.,PEHLIVANOYV A.L, SOFIA, Bulgaria

1. Introduction. In many applications such as potential flow,
heat and mass transfer or elasticity problems the quantity of
interest is the flux across the boundary. Carey, Chow and Seager [1]
proposed a natural procedure for computing the boundary flux for
two-dimensional problems based on the previous ideas in Wheeler [2]
and Carey [3]. In [4] Lazarov et al prove that the method of [1]
gives 0(h®/?) accurate boundary-flux calculations for both the
consistent and 1lumped mass procedures. These superconvergence
estimates are derived under the assimptions of quasiuniformity of the
partition and high regularity of the solution. But this 1{s almost
never satisfied in practice! Then it is much more natural to consider
an approach using local analysis. In this paper we introduce a
subdomain Qo, which includes a flat portion of the boundary of the
domain Q, and where the solution has the required regularity. We
prove that the flux across GQO N 8Q can be estimated with a
superconvergent order of accuracy plus the solution error and the
flux error in weaker norms over the slightly larger subdomain 91. The
last two terms measure the effects from outside of 91.

Our investigations are based on the papers of Nitsche and Schatz
[6] and Wahlbin [71 and the previous investigations of
superconvergence subdomain estimates up to the boundary [8,9].

2. Notations and Problem Formulation. Let Q be a bounded domain
in R? with a boundary I'. The standard notations for Sobolev spaces
and associated norms are implied throughout. We consider the Dirihlet
problem : Find u € H)(Q) such that

2
alu,v) = L 2 a,(x) 8,u 8V d =i fev dx = f(V) h
1, 3=1



for each v € M;(Q) , where the bilinear form a(e,o) is
H(@)-elliptic.
The normal flux across the boundary is defined by

2
q= - 2 a1j(x) 61u cos(ﬁ.xj) , xerl , (2)
1, 3=1
where h is the outward normal to the boundary I'. Then the following
ralation for the flux holds :

- <q,v>  p =alu,v) - fv) for any ve W@ , (3)
where <q,v>o'r = f qv ds .
r

The finite element space X, 1is defined by introducing a
piecewise polynomial basis on a discretization T, of Q comprised of
elements K. Then

X, =(veC®@ :v| eP (K ,KeT 3} ,
K
where Pi(K) is the set of polynomials of first degree. Next, we
define the following subspaces of Xh :
Vh =(ve Xh : v =0 at the corners of Q } ,

&h ={ve Xh tv=0o0onT1) .. (4)

Then the corresponding to (1) discrete problem reads as follows:

Find u, e @/h such that

ah(uh,v) = fh(v) for any v e Qh , (5)

where sign h 1n a (°,¢) and f (°) indicates numerical integration
/ see [5] /.

Let us define the finite dimensional space VE of functions
which are restriction on the boundary I of functions in vV, . Then
following [1]1 the approximate flux across the boundary T s

constructed as a function q, € VE such that

- <qh,v>o’r = ah(uh,v) - fh(v) for any v e Vh . (6)

Let 91 c Q be such that 91 include a flat portion of the
boundary of Q. Moreover we assume that 91 can be covered with linear
triangular elements exactly and Q 1is a convex subdomain of Q.

Let Th(91) be the partition of Q1. We suppose that Th(Q1) is
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regular / see [5] / and quasiuniform / see [4] /.

3. 'Interior’ Boundary Estimates for the Approximate Flux. Let
I, «T. We introduce the following norm :

2 172
(Y i) - 7

e c lo

*
Mg r

Our main result is :

Theorem. Let Qo [ 91 cQ, let ro = 690 nr, I‘1 = 691 nTr ,
let g and qa, be the flux and its approximation defined by (3) and
(6). Let the following assumptions be fulfilled :

(1) ue W*EQ) ;

(1) a,, e W@ , 151,js2 , f e W (@) ;

(111) @ 1s covered by linear triangles exactly and Q iIs
convex subdomain of Q ;

(iv) the partition Th(Q‘) is regular and quasiuniform ;

(v) the guadrature formula is exact for polynomials of first
degree .

Then there exists h1 € (0,11 such that the following holds
if dist(GQO\F,GQ'\F) > C1h1 then for all h e (0,h1]

* 372
la - a5, < en [uwuag+uw%%]

-1/2
+ ch flu - uh||_",$21 + ch |q - qhuo’r1 . (8)

Proof. The main idea of the analysis is the cancellation of the
interpolation error for any two adjacent elements due to the
regularity of the partition / see [10] /. o

Corollary 1. Let us suppose that the solution is sufficiently
smooth, we cover the whole Q by finite elements exactly and have an
optimal error estimate in H'(Q2). Then

/
h lla -aul,,r < ch?’2 "u"2+e,Q
|
and by the Aubin-Nitsche trick we get

- 3/72
hVR - g $ 07 g -

Ssummarizing we conclude that if the partition of Q 1{s regular
and the adjoint to (1) problem is regular / see [5] / then we obtain
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*

0(h3/2?) estimate for the flux error across Fo . 0

Corollary 2. Let us consider the Poisson equation in L-shaped
domain. As shown in [6] the best estimates we can derive are

4/3-€
fhu - uh"-1,Q1 & ch lulls,se,0 -+

flu - < ch?/3"¢

uh“1,91 "uus/s-e,n °

Then by (8) the final estimate for the flux error is O(h%/®7%),
But here we did not do anything to avoid singularities which arise
from the reentrant corner. Proper mesh refinement or usage of
singular trial functions lead us to the standard estimates both for
the solution error and the gradient error. Further we proceed as in
Corollary 1. o

References:

[1] Carey G.F., Chow S.S., Seager M.R.: Approximate Boundary
Flux Calculations, Comp. Meth. Appl. Mech. Eng. 50(1985),107-120.

[2] Wheeler M.F.: A Galerkin Procedure for Estimating the Flux
for Two-Point Boundary Value Problems Using Continuous
Piecewise-Polynomial Spaces, Numer. Math. 22(1974),99-109.

[3] Carey G.F.: Derivative Calculations from Finite Element
Solutions, Comp. Meth. Appl. Mech. Eng. 35(1982),1-14.

[4]) Lazarov R:D.,Pehlivanov A.I., Chow S.S.,Carey G.F.:
Superconvergence Analysis of the Approximate Boundary Flux
Calculations, Preprint 08-1989, Enhanced O0il Recovery Institute,
University of Wyoming (1989).

[5] Ciarlet P.G.: The Finite Element Method for Elliptic
Problems, North Holland, Amsterdam 1978.

[6] Nitsche J.A., Schatz A.H.: Interior Estimates for
Ritz-Galerkin Methods, Math. Comp. 28(1974),937-958.

[7]1 Wahlbin L.: Local Behaviour of Finite Element Methods.

[8]1 Pehlivanov A.I.: Interior Estimates of Type Superconvergence
of the Gradient in the Finite Element Method, Compt. Rend. Acad.
Bulg. Sci. 42(1989), No. 7.

[9] Lazarov R.D., Pehlivanov A.I.: Up to the Boundary Subdomain
Estimates of Type Superconvergence, to appear.

[10] Oganesjan L.A., Ruhovec L.A.: Variational-Difference
Methods for the Solution of Elliptic Equations, 1Izd. Acad. Nauk
Armjanskoi SSR, Jerevan 1979.

278



		webmaster@dml.cz
	2012-09-13T04:40:00+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




