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ON THE NODAL SET OF EIGENFUNCTIONS 

RUF B., MILANO, Italy 

In this note we are interested in qualitative properties of the eigenfunctions 

of the equation 

m -Av + q(x)v = Xv , in SlCR 2 

v = 0 on dQ 

where- f. C R is a bounded and smooth domain, and q e L 0 0 ^ ) . 

It is wll-known that in one dimension the n-th eigenfunction vn of the Sturm-

Liouville eigenvalue problem 

(2) -v" + q(x)v = v in (o,l), v(0) = v(l) = 0 

has exactly n-1 nodes (i.e. nondegenerate zeroes). 

In two (and higher) dimensions the situation is more complicated and relatively 

little is known. Let Zn = (xefi;
 v

n(
x) = 0} denote the nodal set of the n-th eigen­

function vn of (1), and denote by kn the number of connected components of fl\Zn. 

Note that the stated result for one dimension says that kn -= n, for all n e N. In 

two (and higher) dimensions one has only upper estimates for kn. The Courant nodal 

domain theorem [3,4] states that kn £ n, for all n e N. Furthermore, by a result of 

Pleijel [8] one has the asymptotic estimate 

(3) lim sup k" S * < 0.7 , 
n •+• °° n j2 

where j denotes the smallest zero of the 0-th Bessel function. This implies that 

kn = n can occur only finitely many times. Relation (3) would still leave room 

for a lower estimate of the form kn Z an , a e (0,4/j2) , but Stern [9] has given 

examples where kn - 2 occurs infinitely many times. 

Since the one-dimensional result gives a count of the nodal points, another 

possible generalization to higher dimensions could be a measure of the "size" of 

the nodal set. In fact, for q i 0 Briining and Gromes [2] show that if ft is 

simply connected with area F and circumference U, then the length ln of the 

nodal set of the n-th eigenfunction satisfies 

2j 2 
U 

where j denotes again the smallest zero of the 0-th Besselfunction. Complementary, 

Donelly and Fefferman [5] have shown an upper bound ln £ c /X^ , for all n e N, 
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(both results are valid for compact Riemannian manifolds of dimension two, [1]). 

However, the following result shows that such estimates do not hold indepen­

dently of the potential q(x). 

Theorem [6]. Let fiCR be a smooth and bounded domain, and let T be a Lip-

schitz curve in ft which divides ft into exactly two components. Then there ex­

ists for every given e > 0 a potential q
e
 e L°°(ft) such that Z

2
(q

c
) C 

{x e ft ; d(x,T) % e } , where Z 2 ( q e ) denotes the nodal line of the second eigen-

function v
2
 of ( 1 ) with q = q

e
. 

It is easy to see that the Theorem implies the following 

Corollary. There exists no upper bound to the length of the nodal line of the 

second eigenfunction uniformly for all potentials. 

The idea of the proof of the theorem is the following: 

Let ft_ -= { x e ft ; d(x,r) < 1 }, and define ( s u i t a b l y ) a sequence of potentials 11
 n 

q
n
 _ 0 such that q

n
(

x
) = -*

n
 for x e ft

n
 , and q

n
(x) _ c for x e ft \ ft

n
 . 

Using the equation 

(4) - A v
2 n
 + q

n
v

2 n
 - A

2 > n
v

2 j n
 , 

where v
2
 denotes the second eigenfunction, one estimates 

H ^ ' u l / o ^ "
 C

l '
 f o r a 1 1 n E N

' 
H («n' 

I|v2
>n
l|

2
, - Ci/r

n
 , for all n c N. 

With this one now estimates the trace of v
2 n
 on the boundary of ft

n
 in L*(3ft

n
) 

Ь,Л , S c.ll v,
 n
ll 3/- -

L
2
(э:

n
)
 n 2 , n

 н (ňn) 

Cn "n II v 2 i „ || ' Л || v 2 i П | | Э / " S 

2/o ^ ""' M-Lz(ftn) K*(fin) 

1 rt 
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where cn denotes the embedding constant of H (ftp) into L2(3Qn) , and dn 

the interpolation constant of H-/\o,n) between L2(i.n) an 1 !i'(ft ). Note that 

these estimates hold independently of rn . Hence, choosing rr, such that 

(cn
 d

n)/r n •»• 0 as- n -> * we see that v2 n -*- 0 as n -> ̂  in L2(P) . 

This allows to pass to the limit in equation (4), with tin limiting equation 

- A"v2 + q -v"2 = A9 V ? , in ft \ f 
(5) l 

v2 = o on asiur . 

Using the choice of qn(x) on Q \ (ln one now proves that X2 is equal to the 

first Dirichlet eigenvalue on the two subdomains, and that "v2 = aw^ + 3zj t where 

wi and zj are the first eigenfunctions on the two subdomains (extended by zero 

to the other, respectively). Now, if a * 0 and 3 * 0 , then v"2 * 0 on ft \ T, 

and then one proves easily that Z2(qn) C { x e ft ; d(x,T) S e } for n Z nQ . 

In case that a = 0 and 3*0 (or vice versa) one needs an additional argument: 

Setting v2 n = max {v2 n , 0} and fn =
 v*> n / II v2 n il o n e Proves that 

" 2 *" L 2(^ 
*n "*" wl a s n "* °° in *- (ft) » wnere . wi is again the first eigenfunction on 
one of the subdomains. This thenallows to conclude the proof. 

In [7} a similar result is obtained for the equation 

- &v -= A p(x) v , in ft C R2 

(6) 
v -= 0 , on 3ft , 

where p : ft -• R . In the proof a sequence p n is constructed which tends to 

minus infinity in a strip { x e ft; d(x,T) £ 1/n} around T . 

Problems of the form (6) with functions p which assume negative values occur 

as linearizations of certain nonlinear problems. 

If the function p in (6) is positive-valued, then equation (6) describes the 

stationary solutions of a non-homogeneous membrane. It is not known if a result 

similar to the one stated holds for the class of positive functions p . In par­

ticular, it is not known if the length of the nodal line of the second eigen-

function is uniformly bounded independently of p > 0 . 

The mentioned results seem to rule out that the length of the nodal line plays 

a role in a geometric characterization of eigenfunctions. Such a characterization 

would be highly important in applications to nonlinear differential equations. 

In fact, in one dimension many important results in bifurcation theory and vari­

ational methods are due to the stated nodal-point characterization. 

Of course one can think of other ways to generalize the one-dimensional theorem. 

For instance, one could count critical points, turning points, etc., of the eigen-
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function to obtain properties of the eigenfunctions which are invariant under 

the change of the potential q(x). However, there are no successful attempts in 

these directions up to now. 
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