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ON A BOUNDARY VALUE PROBLEM 
WITH GENERAL LINEAR CONDITIONS 

§EDA V., BRATISLAVA, Czechoslovakia 

1. Introduction 

We shall consider the boundary value problem (BVP for short) 

(lx) x(n)
+p1(t)x

(n"1)
+ ... +pn(t)x-;U = f(t,x) 

(2) lt(x) = 0, i=l,...,n , 

where n^l is a natural number, a< b are real numbers, PkGC([a,b], 

R), k = l,...,n, fEC([a,b]*R,R), lj. : C
n_1( [a ,b] ,R) — R is a linear 

continuous functional, i=l,...,n, and X is a real parameter. 

The BVP (1^), (2) is of the form 

(3^) L(x)- Xx = F(x) 

and the existence and bifurcation of a solution to (3^) will be inve­

stigated under the assumptions that the resolvent of the operator L 

is completely continuous at a point X E R and that the nonlinear ope­

rator F is sublinear at infinity. 

2. The general theory 

Let (X,||.||) be an infinitely dimensional real Banach space. In 

this space the following lemma holds. 

Lemma 1. Let L : D(L)C X -* X be a linear mapping such that 

(H,) for some Xn€i(-oo,oo) the operator L- X0l (I is the identity 
-1 on X) is one-to-one and onto X, (L- X I) is completely continuous 

on X . 

Denote by {^ / tne sequence of all eigenvalues of (L-A, I)~ 

(it may be finite or even void, 0 is the only accumulation point of 

it if there is any) and by [x J the corresponding sequence of eigen­

vectors of (L- k l ) ~ where each term X occurs in the sequence 

I X | so many times as its multiplicity i nd i ca tes . 

Then the following statements are true: 

(i) The operator L is closed, its resolvent set £(L) is non 

void and for each X G £ ( L ) the resolvent (L-XI)" is a completely 

continuous operator defined everywhere on X . 

(ii) The spectrum Cf(L) consists of the eigenvalues 

^ n = x o +
 T; 

of L only and x are the corresponding eigenvectors, f (v \ has no 
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finite accumulation point. 
(iii) L is a Fredholm mapping of index zero. 
(iv) If P : X—• X and Q : X —* X are arbitrary linear continu­

ous projectors such that 
Im P = ker L, ker Q = L and X = ker L 0 ker P, X = Im Q © Im L 

and 
L l D ( L ) r i k e r P' KP : I m ~ "~* D ^ L ^ ^ k e r p i s " t n e i n v e r s e o f 

Lp, t h e n : 

(a) the operator Lp is closed; 

(b) the operator Kp : Im LCX—-«X is completely continuous. 

(v) If Im LOker L = {o} , then 

X = ker L 0 Im L . 

Proof. The statements (i), (ii), (v) and the statement (iii) under 

additional hypothesis Im LC lker L = (o\ have been proved in Theorem 1, 

[4j , pp. 555-558. Keeping the notation from the proof of that theorem, 

in the general case it. suffices to consider the case that Z1 = ker L 0 

© Z 1 2 . If dim Z1 = n, dim ker L = k, then dim Z 1 2 = n-k . Since 

L1|Z is one-to-one, dim Li ̂ z 12^ = dim zi? = n"k# As L1^ Z12^ Z1» 

we can write Z1 = Z 1 3 © Im L1 whereby Z 1 3 is a suitable vector sub-

space of Z, and dim Z,-, = k. Then 

Z = Zj 0 Im L2 = Z 1 3 © Im Lx © Im L2 = Z 1 3 © Im L 

and dim Z1, . = dim Z.., = k = dim ker L. The statement (iv) has been 

proved in [4], pp. 554-558. 
Theorem 1. Let the operator L : D(L)CX-*X be a linear mapping 

satisfying (rL) and let the operator F : X —* X fulfil the hypothesis: 
O O F is continuous, bounded (it maps bounded sets into bounded sets) 
and 

i n --feU - 0 . 
HxlhoD l|X" 

Then for each XE£(L) the set S of all solutions to the equa­
tion (3^) is nonempty and compact. 

The proof follows from the facts that for % E £(L) (3^) is 
equivalent to the equation x = (L- %I)~ .F(x), the operator 
(L- XI) .F is completely continuous and for all possible solutions of 
x = o< (L- %I)~ ,F(x), 0---oC--*l we have an apriori estimate. 

Lemma 2. Let XECT(L) and let all assumptions of Theorem 1 be 
fulfilled. Then the following statement holds: 

If there exists a sequence |A, n}C£(L), lim %n = X and a 
n -* co 

bounded sequence of solutions x of (3^ ), n=l,2,..., then there 
n 
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exists a subsequence { x~} of the sequence {x \ and a solution x 
of (3*) such that lim x = x 

** m m-->oo 
Proof. If P : X —* X and Q : X —* X are linear continuous pro­

jections with the property Im P = ker (L- /ID, ker Q = IM (L-A.I), 
then each solution x of (3^ ) satisfies 

n 
(4) x = P(x) + Kpo(I-Q)oF(x) + (^R- X)Kp*(I-Q)(x) 

and the conclusion follows from the complete continuity of the opera­
tors P + Kp°(I-Q)°F, K p

0(I-Q) and from the closedness of the opera­
tor L . 

By the last lemma the following theorem is true. 
Theorem 2. Assume that all assumptions of Theorem 1 are fulfilled. 

Then the following statement is true: 
If ^ 0 £ G*(L) and the equation (3« ) has no solution, then 

o 
* U = +oo , where x. is an arbitrary solution of (3*). l i m li x 

- - * * „ 
Apriori estimates for solutions x, of (3^) in a neighbourhood of 

% = 0 are given by 
Lemma 3. Suppose that L : X—> X is a Fredholm operator of index 

zero, the mapping F satisfies O O and that the following hypotheses: 
(H,) there exists a continuous positive definite bilinear form 
< . , . > : X*X-*R such that 
(5) <y,z> = 0 for each yC ker P and for each zE ker L , 

where P : X —> ker L is a linear continuous projector; 
(H.) there exists a constant d, 0 < d < l , such that for each yC 
Eker L, ||y|| = 1, each sequence |tn|CR, tR—> co as n—*• oo , each 

sequence {yn}(^
ker L» Hyn" = * witn yn~~*' y as n ~* °° and each 

sequence j z l C k e r P such that ||zn||-^d 

(6) lim inf<L(tnzn)-F(tn(yn+zn)),y><0 
n -*• oo 

( (7) lim sup<L(t z )-F(t (y n+z n)),y> > 0 ) 
n-»oo 

hold. 
Then there exists an R n

> 0 sucn i^3* a ny solution x of (3^) 
satisfies ||x||<R0 as long as 0-^X-^d/8c (-d/8c=^ h^ 0) where c = 
= IIKDII • || X—Q i| > 0 and K p, Q have the same meaning as in Lemma 1. 

1 2 1 2 
Proof. Suppose that x = x + x , x G ker L, x E ker P, is a 

solution of (3^). Then as in (4), x 2 = Kp°(I-Q)°F(x
1+x2) + ftKp° 

c ( I - Q ) ( x 1 + x 2 ) and 
| | x 2 | | ^ 2 c ( | | F ( x 1 + x 2 ) | | + | X l l l x 1 ! ! ) fo r a l l \X \ < £ . 

Let 0 < £ < - 7 - ^ be a r b i t r a r y . By ( H 0 ) t h e r e e x i s t s an R > 0 such t h a t 
4c i 
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| | x 2 | | == 2 c ( l - 2 c e ) _ 1 ( | X | + t)\\xl\\ < 4 c ( | A , | + O l l x 1 ! ! for x E R . 

Hence f o r 0 < I < d /8c and f o r | X | < d /8c we o b t a i n 

(8) | | x 2 | | < d | | x 1 | | for a l l | |x | |>R . 

Now we pu t x 1 = t n y n , t R = | | x j ; | | , y p E k e r L, x 2 = t n z n < E k e r P and 

by (8 ) we have || z || < d and we c o n t i n u e as i n t he p r o o f of Lemma 1 i n 

[3 ] . 
Theorem 1 in [2] implies the following theorem. 

Theorem 3. Assume that the hypotheses (H,), (H2) are fulfilled. 

Let further 0 be an eigenvalue of the linear operator L with odd 

algebraic multiplicity and let there exist a S >0 and an R> 0 such 

that each possible solution x of (3^) for -5 — ̂  — 0 (for 0 ̂  X — 

£ S) is such that || x || < R . 

Then there exists an *} > 0 such that: 

a; the equation (3^) has at least one solution for - r\ == h ̂  0 (for 

0 ^ X ̂  rj ) ; 
b) the equation (3^) has at least two solutions for 0 < X — i) (for 

- ^ k < 0) . 
Corollary 1. Let the assumptions (H,) - (H.) be fulfilled. Let, 

further, 0 be an eigenvalue of L with odd algebraic multiplicity. 

Then the statements a) and b) of Theorem 3 are valid with the only 

change that the statements in brackets should stand without brackets 

and conversely. 

3. The boundary value problem 

The theory developed in the preceding section can be applied to 

the problem (1^)» (2). If we assume the hypotheses 

(H5) for some A, £ (-00 ,QD ) the BVP (2), 

(lx ) x(n)
+p1(t)x

(n-1)
+ ... +pn(t)x- XQx = 0 

has only the trivial solution; 

and 

(H,) lim 'f(}*,x)l = 0 uniformly for all tG[a,b] , 
5 |x|—oo ,X| 

then the operator L : D(L)CC—»C defined on D(L) = (xGC : x ( n )GC, 

x satisfies (2)| by 

(9) L(x)(t) = x(n)(t)+p1(t)x
(n-1)(t)+ ... +pn(t)x(t) for each 

a=̂  t^b and all x€0(L) 

satisfies (H,) in C = C([a,b],R) provided by the sup-norm and F : 

C-*C determined by F(x)(t) = f(t,x(t)) for all tE[a,b] and all 

x(EC satisfies (H?) in C . 
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