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STABILITY AND ASYMPTOTIC PROPERTIES
OF DYNAMICAL SYSTEMS IN THE PLANE

RAB M., KALAS J., BRNO, Czechoslovakia

Consider the real dynamical system in the plane
(1) z' =4 (t)x + ht,z),

where A(t) = (ajk(t)). Jsk =1,2; t € [£g,@) =: J is a matrix function and
h(t,z) = (hl(t,:c )» hz(t,:z:)), x = (:cl,acz) is a vector function, defined on the
region J x {(z},z,) cr?: :ci+ :c% < r s w},

The transformation
1,
y = Bxr , B= 1,

from real to conjugate coordinates 3,z converts (1) to the equation

-‘l:]" y = (Z,; )) 2=z +iy

@) y' = BA()B Yy + B (8,57 YY),
where 4 a,b
BAB =1_ _l>
b, a

1 i ) 1, i
a =zlay+ay) v glay -ap), b=gla-ay) + gl +a,).

From (2) we obtain

3) z' = a(t)z + b(t)z +g(t,z,2)
with _ 1 - 1 1 1
g(t,z,2) = hy(t, 5(z + 2), 7{(3—5)) + iyt 5(2+3), 5 -2)).

The second equation z’' = a(t)z + b(t)z + g(t,s,2z) is redundant.

Conversely, putting a,; = Re(a +b), a, = Im(b - a), ay; = Im(a +b),
a,, = Re(a - b), hl(t,x,y) = Re g(t,t +iy, x - iy), hz(t,:z:,y) = Img (t,x +iy, z- ty),
equation (3) can be written in the real form (1). Thus, it is sufficient to investi-
gate equation (3) instead of system (1) since the asymptotic properties of (3) can be
easily modified to (1).

Theorem 1. Let the following assumptions be fulfilled.

The functions a,b : J +C have continuous first derivatives.
(A) { The function g : Ix{z2€C, |z| <r S ®} + € is continuous and any initial
problem to (3) has unique solution.

(B) lim inf (Ja@®)|- [6(£)]|) > 0.
t >

(C) There existe continuous function « : J > R such that

103



|y (t)g(t,2,2 ) +e(t)g (t,2,8)] S k(@)Y @)z +e(t)z]|

for t 212 ty, lz] < r s o, where

v = lal +/al?- b2, o =2,

e ]
If
lim sup fte(s)ds < ®
t> o
where
O =Rea + b Rea | + Re(yy'- ec’) +|ye’ - v& | + K,
a MEIEE

then the trivial solution of (3) is stable, if

lim sup fte(s)ds = -

t+oo

it i8 asymptotically stable.

Outline of the proof. Let z = z(¢t) be any nontrivial solution of (3). Then
(4) V(t) = |v(B)z () +e@)z(t)]
is a Lyapunov function for (3) satisfying the inequality

b

] [

2z +c'a
~ Re a Y
a

v <
< V(Re a + +Reyz+cz + k) S VO.

This inequality implies the statement.

Corollary. Let a,b € €, |a| > |b| and let p,q : § + € be continuous functions.
If

lim sup st

t >

[(lal—ibl)z Re a

: +lpG) + |qs)| |ds < =,
Aal?-1p12 191

then the trivial solution of the equation
(5) z'=(a +p(t))z + (b +q(t))z
i8 stable. If

lim ft[(|a|—|b|)2 Re a

+ lpGo)| + |q<s>l]ds =
Aalé-1p|% |a|

t >

then the trivial solution is asymptotically stable.

Remark. If we apply Theorem 1 to the case a(t) = a, b(¢) = b, q(t,z,2) = 0,
that means to the equation

(6) z' = az + ba, a,b € C,

the assumption (B) implies |a| > |b| and the origin is a single singular point which
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focus, if |b| < |Ima| and Rea # 0,
centre, if|b| < |Ima| and Rea =0,
node, if |b| 2 Ima.

The equation |yz + ez| = A where ) is a parameter (compare with (4))
represents a pencil of ellipses which intersect the trajectories of (6) at a constant
angle w = arg(ia). If
M o] > lal,
the origin is a saddle point; note that the condition (7) implies |b| > |Ima| (see-
Theorem 2). In this case there exists one parameter family of solutions of (6) which
converge to the origin and two parameter family of solutions which tend to infinity
as t> @,

To receive analogous result in the nonconstant case the equation (3) is trans-

formed by means of the mapping

w =h(t)z + k(t)z,

h(t) = iIm a(t), k(&) = /|b2(t)] - Im%a(e) + b(t)

to an equation suitable for the use of Wazewski topological method with the following

result (it is formulated for simplicity for the linear case only).

Theorem 2. Let a,b €C, |b| > |Im a| and let p,q : J + C be continuous
functions. Put £ = 2(|h|+|k])/||n]|-]k]]|, @ =Rea, B = |b|2- Im’a. Let

lim sup (|p(®)| + |q(&)]) < 'E'
t>oo

Then there exists a solution 3 #+ 0 of (5) sueh that

lim z(t) expl-et - £L° (|p(a)] + lq(a)])ds} = 0
0

t >
for any € > o - B. Every solution z linearly independent to 2z has the property
() expl-nt + £/ (Ip@)] + late)|)ds} » =
0

for any n < o +8B.
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