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STABILITY AND ASYMPTOTIC PROPERTIES 
OF DYNAMICAL SYSTEMS IN THE PLANE 

R Á B M . . K A L A S J. , B R N O , Czechoslovakia 

Cons ider the real dynamical system in the plane 

(1) x' -A (t)x + h(t,x)t 

where A(t) = (a.,(t))t j , k = 1 ,2; t 6 CtQ,«>) =: J is a matrix func t ion and 

h (t9x) =• (h.(t,x ) , h7(tsx))t x = (x,tx0) is a v e c t o r func t ion, defined on t he 
1 L ,2 2 . 2 l ~ rég ion Jx { (x , , x 2 ) G S : x , + x 2 < r £ °°) 

The transformation 

!"" ^ 
z/ = Bx , B 

[1. i 
ll. -І , y = (zsz ), 3 = a; + £z/ 

from real to conjugate coord inates z,z converts (1) to the equat ion 

(2) y> = BA(t)B~ly + Bh(t,B~ly)t 

where 

BAB~l 
a , Ъ 

Ъ , a 

a = i K i * ^ * 2 ^ z i " ^ ' b = 2(an-azz) + z^i*^ • 

From (2) we obta in 

13) z' = a ( t ) a + b(t)z + g(t,z3z) 

W i t h - 1 - 1 1 - 1 
g(tjZ3z) = h1(t, 2 ( s + z), 2i (2 - s ) ) + £ h 2 ( £ J 2 ( s + 2 ) » 2-rCs - z ) ) . 

The second equat ion 3 ' = a(fc)i~ + Ti(t)z + g(t3z3z ) is r e d u n d a n t . 

Converse ly , p u t t i n g a , , = Re (a + b), a , 2 = Im(b - a ) , a-,, = Im(a + b ) , 

a 2 2 = Re(a - b), h1(t,x,i/) = Re a(fc,r +£z/, x - t z / ) , h2(t,x,z/) = Im a (£,x +iy,x- iy), 

equa t ion (3) can be wr itten in the real form ( 1 ) . T h u s , it is suffic ient to i nves t i ­

gate equa t ion (3) ins tead of system (1) s ince the asymptotic propert ies of (3) can b e 

eas i ly modified to ( 1 ) . 

Theorem 1. Let the following assumptions be fulfilled. 

The functions a>b : J -*• C have continuous first derivatives. 

(A) • The function g - J x {z G C3 \s\ < r £ °°} + C is continuous and any initial 

problem to (2) has unique solution. 

(B) lim inf (\a(t)\- \b(t)\) > 0 . 
£-*-°o 

(C) There exists continuous function K : J •*• E such that 
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\y(t)g(t3z3z) +c(t)g(t,z,a)\ <• K(t)\y (t)z +c(t)z\ 

fop t i T i tň, | з | < r S. °°, ьЛere 

-7 

where 

\a\ + / | a | 2 - | f c | 2 . 

lim s u p I ( s ) d s < °° , 
t-юo 

ab 

= R e a + I-- R e a l + R e ( y ү ' - o') + | ү o ' - үfe | + ^ 

ІY І 2 -M 2 

then the trivial solution of (S) is stable3 if 

lim sup / Q(s)ds = - °° 
t-*-°° 

it is asymptotically stable. 

Outl ine of t h e proof. Let z = z(t) be any n o n t r i v i a l solution of ( 3 ) . T h e n 

(4) V(t) = \y(t)z(t) + e(t)z(t)\ 

i s a L y a p u n o v function for (3) sat i s fy ing t h e inequa l i ty 

V < V (Re a + - Re a + Re Y ' 2 * C--a + K ) < VQ. 
\a | yz + eg ' 

This inequa l i ty implies t h e s t a t e m e n t . 

Coro l la ry . Let a3b e C, | a | > | b | and £e* p., a : J -* C be continuous functions. 

-7 

lim s u p / 
£ - • < » 

( l a l - І b \)Ł Re a 

/ | a | 2 - | b | 2 1*1 
+ |p(s)| + \q(s)\ ds < °° , 

then the trivial solution of the equation 

(5) z' = (a + p(t))3 + (b + a(*))s 

ts stable. If 

lim Г M . - i¥ • '"•" • '<•»]-
then the trivial solution is asymptotically stable. 

Remark . If we app ly Theorem 1 to t h e case a (t) = a, b(t) = b, q(t3z3z) = 0, 

t h a t means to the equa t ion 

(6) z' = az + bz3 a3b G C, 

the assumption (B) implies | a | > | b | a n d the or igin is a s ingle s i ngu l a r poin t which 
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is a 

focus, if | b | < | l m a | and Re a ^ 0, 

centre, if | b \ < \ Im a | and Re a = 0 , 

node, if \'b\ Z Im a. 

The equation \yz + cz \ = A where A is a parameter (compare with (4)) 

represents a pencil of ellipses which intersect the trajectories of (6) at a constant 

angle co = a r g ( i a ) . If 

(7) | b | > | a | . 

the origin is a saddle point; note that the condition (7) implies |b | > | l m a | (see 

Theorem 2). In this case there exists one parameter family of solutions of (6) which 

converge to the origin and two parameter family of solutions which tend to infinity 

as t -*• °° . 

To receive analogous result in the nonconstant case the equation (3) is t rans­

formed by means of the mapping 

w = h(t)z + k(t)zt 

h(t) = i lm a(t), k(t) = /\b2(t)\ - lma(t) + b(t) 

to an equation suitable for the use of Wazewski topological method with the following 

result (it is formulated for simplicity for the linear case only). 

Theorem 2. Let a,b 6C, |b | > |lm a \ and let p,q : -7 + C be continuous 

functions. Put K = 2( | fc |+ | fc | ) / | \h\- \k\ | , a = Re a. 3 = / | b | 2 - Im2a. Let 

lim sup ( |p( f ) | + \q(t)\) < f * 
£->oo *-

Then there exists a solution zQ ^ 0 of (5) such that 

lim zAt) exp[ -e t - V+ ( |p(a) | + \q(s)\)ds) = 0 
t-H» ° t0 

for any e > a - 8. Every solution z linearly independent to zQ has the property 

z(t) expf-n* + V$ ( |p(») | + k ( « ) | )da] 
t0 

for any n < a + 3. 
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