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MULTIPOINT BOUNDARY VALUE PROBLEMS 
AT RESONANCE 

RACHUNKOVA L, OLOMOUC, Czechoslovakia 

1. Introduction 

We shall investigate the multipoint BVPs9 where the number of 

points is greater than the order of a differential equation. For 

the differential equation of the second order such problem can have 

the form 

(1) u» - f(t9u9u') 9 
(2) u(a)-c1t u(b)»u(tQ) + c2 t 

where a9t 9b9c1902€
 Rt a<t <b . 

The questions of the existence of solutions of problem (1)9(2) 

were studied by H.Domer [3] and by I.Klguradze and A.Lomtatidze [4] 

for linear differential equations, the nonlinear case was considered 

by A.Lomtatidze [5] • It is worth mentioning that the similar problem 

but for partial differential equations, which is known now as the 

Bitsadze-Samarskii problem, was first stated and solved by A. 

Bltsadze and A. Samarskil [l]# 

2. Differential equations of the second order 

We are interested in the modifications and generalizations of 

problem (1)9(2) turning it into problems at resonance. For example 

we consider the four-point condition 

(3) u(a)-u(c)«A t u(b)-u(d)-B t 

where a < c < d < b , a,b,c,d,A,B € R. 

Problem (1)9(3) is at resonance, so we have not the Green 

function for the corresponding homogenous problem. Thus we consider 

the consequence of the auxiliary equations 

(4n) u" » u/n + f (t9u9u
l) 

and we find the conditions for the existence of solutions u n of 

regular problems (4n),(3)» Finally we prove that u • lim u^ is 
k-*«> * 

a solution of (1),(3). Let us show a certain simplier modification 

of such existence theorems: 
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Theorem 1. Let f satisfy the looal Carath6odory conditions on 

[afb]xR f let g he a polynomial satisfying (3) and let there 
exist r 1 f r 2 € R f r.j < r 2 f such that 

(5) fCtt^+SotSo) ^ Sj t f(t#r2+S0
,8o) - go f o p a#e* t € < a» b )* 

Furtherf let 
(6) f (tfx,y)sign y £ h^t) + hp/tNyl + hQy

2 

for a.e. t € (afb) and for each x€ [r.jfr2] 9 | y | > 1 9 
and 
(7) f(tfxfy)sign y > -h^t) - h^t^yl - ^ y 2 

for a.e. t € (a9c) and for each xe [rlfr2] 9 |yl> 1 f 
where h - , ! . ^ 6 L(a fb) f h Q€ (0,+ oo ) # 

Then problem (1)f(3) has at least one solution u satisfying 
r., < u(t)-gQ(t) < r 2 for each t€ [a fb]. 

Condition (5) of Theorem 1 can be replaced by the assumption 
of the existence of lower and upper functions G",f C, for (1)y(3) 
with G*.j(t) < <T2(t) on [afb] f [10]. Under the assumptions of 
Theorem 1 the polynomials r-j+gQ and r 2+g 0 are the lower and 
the upper functions for (1)f(3)9 respectively. 

Using the Mawhin continuation theorem (see [G] ) instead of 
the Schauder fixed point theorem, we have proved that inequality (6) 
can be changed on (cfd) by one-side inequality 

f(t fx fy)< h ^ t ) +h2(t)|y| + h Qy
2 . 

3. Higher order differential equations 

Now we will study the 2n-point BVP at resonance 

(8) u ( n ) - f(tfufu
,
f...fu

(n-1)) , 

(9) u ( a 2 j ) - ^ ^ j - ^ " Aj • im^f*tnt 
where - o-> < a-»a.|< a2< ... < a 2 n - b< +oo f A.€ R, 3«1f ...fn. 

Solving the boundary problems we often use theorems of the 
type of Conti [2] . These theorems guarantee the existence of so­
lutions of boundary problems under the following assumptions: 
(10) a non-linear part of a differential equation is bounded by 

an integrable function f 
(11) the corresponding homogenous problem has only the trivial 

solution (i.e. the BVP is regular). 
Problem (8)f(9) does not fulfil (11) and so we cannot use such 
theorems even though f satisfies (10). Therefore we have proved 
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the existence proposition in which (11) is .replaced by a sign 

oonditiont 

Proposition. Let there exist r€(of+oo ) f Ae{-1fl} and 

a function heL(afb) such that on the set [a(b]xR
n there are 

satisfied the conditions 
A[f(tfx1f •••*xn) signx.j]>0 for (x.,1 > r 

and 

|f(tfx1f...fxn)|< h(t) . Let A.»0f j-19...9n. 

Then problem (8)f(9) has a solution v such that there exists 

t0e(afb) with |v(t0)l< r . 

How, by means of this proposition and the suitable lemmas on 
a priori estimates, we can prove various existence theorems s 

Theorem 2. Let g (t) « > " d^t1 be a polynomial satisfying 
i»1 

(9 ) f ^ " i n a x l l a g ^ a g ^ ^ l t k < i < n f k - 1 , . . . , n - 2 f f0«b-a t 

Vntm^ «- 1. .Further, l e t f sa t i s fy the local Caratheodory condi­

t ions on [a f b]xR n and l e t there ex i s t r € ( 0 , + oo ) andA€{-1 f l } 

such that on [a,bl x Rn the conditions 
(12) w\[f(t fx l f . . . f x n ) - nld^] s ign z 1 > 0 for Ix.-!* r f 

(13) | f ( t t ^ l f . . . f ^ ) | < 5^h i ( t ) |x i | + a)(tf I ^ j x J ) , 
i*1 i«1 

are satisfied, where h^C L(afb)f i»1f...fnt are non-negative 
functions fulfilling 

n b 

(H) I_ rn-1 ... fi-1 $ h±(t)dt < 1 
i»1 a 

and to, satisfying the local Caratheodory conditions on [afb]x (0foo)f 
is non-negative non-decreasing in its second argument and 

b 
lim ~ (ca(tf t?)dt » 0 . 
' a 

Then problem (8)f(9) has at least one solution. 

Let us compare the existence conditions for the second order 
and for the n-th order. 

a) The sign conditions. Comparing condition (5) and condition 
(12)f we can see that (5) depends on r«j,r2 and gQ only, in 
contrast to (12) which has to be satisfied for each |xj> r and 
for each Xg, ... f x^eR . 
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b) The growth conditions. The functions h . . . ,h2 of (6)f(7) can 
be arbitrary Lebesgue-integrable functions, while h^f i-1f..#fnf 
of (13) satisfy (14)f i.e. their greatness depends on b-a« Moreover 
(13) implies that f must not grow quickly in its variables x.j ••• 
• ..,3: • In contradistinction to this f (of Theorem 1) can be arbi­
trary growing in x and not more than y in y . 

The uniqueness of (8)f(9) can be proved under an appropriate 
Lipschltz condition, with sufficiently small Llpschitz constant 
(see [9] ) . 

For similar k-point BVPsf n<k<2n f see [7f8] • 
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