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SOLUTIONS TO A DIFFERENTIAL INCLUSION 
OF ORDER n 

SVEC M., BRATISLAVA, Czechoslovakia 

We will consider the differential inclusion 

(E) Lx(t) € F(t,x(*>(t))), n>l 

where Lnx(t) is the n-th quasiderivative of x(t) with respect to the 

continuous functions at(t) : J=[tQ ,00)—>(0,oo), i=0,1,... ,n, J
00a^1(t)dt=oo, 

*o 
i=0-l n-1, Lox(t)=aQ(t)x(t), L.x(t)=a. (t) (L._4x(t))', 1=1,2,... ,n; 

F(t,x):JxR—¥ {nonempty convex compact subsets of R}, R=(-oo,oo); p:J—>R 

a continuous function, lim i->(t) =00 as t—>oo. 

Under a solution x(t)€(E) we will understand a proper solution 

existing on some ray [T ,00). 

Notationa- F(t,x)x>0 (<0) means : yx>0 (<0) for each y <s F(t,x); 

if h:JxR—>R, then F(t,x)> (<) h(t,x) means : y> (<) h(t,x) for each 

y e F(t,x); if B c R, then |B| = sup{|x|:x « B}, IIBH = inf{|x|:x e B}. 

For t0< c < t t ^ 

Po(t,c) = 1, P.(t,c) = f a" 1^) S a ; 1 ( s 2 ) . . . J v " 1 a 7 1 ( s . ) d s . . . . d s l , 
c c c 

Qn(t.8)=i. Ql(t.o =/V (a^) r-vi2(Sn.2)...r
1a-1(8i)dsi---dan-,-

C ' c c 

i = 1,2 n-1. 

The basic aaaumptiona. 1. F(t,x) is upper semicontinuous on JxR; 

2. F(t,0)={0}; 3. F(t,x)<0 for each (t-x) « JxR, x ?- 0 or 4. F(t,x)>0 

for each (t,x) € JxR, x * 0. 
The notions of oscillatory and nonoscillatory solutions will be 

used in the usual sense. 

Let x(t) be a nonoscillatory solution of (E) existing on [T ,00). 

Then from the assumption lim *>(t) = 00 and from the assumptions 1.- 4. 
t-—>oo 

it follows the existence of such t >. Tx that Lx(t) * 0, 1=0,1, — ,n, 
on [t .00), x(t)L x(t) < 0 (>0) if 3. (if 4.) is satisfied. Therefore, 

l n 

all Lx(t), 1=0,1, ,n-l, are monotone and lim Lx(t) exist in the 
v t—1>00 

extended sense. Only two cases are possible: a) lim |Lx(t)| = 00; 
t — • < » 

b) there exists k « {0,1,.. . ,n-l} such that lim Lfcx(t) is finite, 
t M» 

l im L x ( t ) = 00 Sgn x ( t ) , 1 = 0 , 1 , . . . , k - l , l im L x ( t ) =0, i = k + l , . . . , n - l . 
t—too v t—>oo 
Thus, the set of all nonoscillatory solutions of (E) can be divided 
into disjoint classes defined in the following way: A nonoscillatory 
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solution x(t) of (I) belongs to class Vn if the case a) occurs, and 

it belongs to the class Vk, k m {0,1,... ,n-l}, if the case b) occurs. 

Lemma JL. ([1], Lemma 4 and Lemma 6, [2], Lemma 3). Let x(t) e Vk, 

k « {0,1,...,n-1}. Then there exists Tt>t0 such that sgn x(t) = 

sgn I^x(t) for t>-Tt. If x(t)Lnx(t)<0 on [T4,oo), then for n+k even 

(odd) |Lkx(t)| increases (decreases) on [Tt,oo). If x(t)Lnx(t)>0, 

then for n+k even (odd) |Lkx(t)| decreases (increases) on [Tt,oo). If 

lim Lkx(t) = c^* 0 , then there exist two constants 0 < a^ <lc.\^ ft. 
I—•CO 

and Tk*> Tt such that okPk(t,c) < a0(t)|x(t)| < ty>k(t,c) , t>Tfc. 

Our aims are : to state the conditions which guarantee that 

lim Lfcx(t) = 0 for each x(t) e V , k«{0,l,...,n-l} and also to state 
t- -

{0,1 n-1}, 

is empty. 

These problems for the case that instead of the inclusion (E) we 

have an equation were discussed in [1],[2],[3] and for (E) in [4],[5]. 

Theorem 1_ Let the conditions 1.- 4. be satisfied. Let G(t,u) : 

Jx[0,oo) —-> [0,oo) be continuous and for each fixed t«J nondecreasing 

in u such that 

(1) G(t,|x|) <. HF(t,x)H , x « R . 

Let k « {0,1,...,n-1} and let 
00 

(2) / a^(s) 0^(3,10 G(s,aa;
1(p(s))Pk(ic»(s),c)) ds = oo 

t 

for all t *> Tk such that *>(s) > c for s r> Tfc , c •£ tQ and each a > 0 

or m 

(3) lim sup / a'^s) (̂  (s,t) G(s,aa~ft(«>(s) )Pk(P(s) ,c)) ds > 0 
t—*oo t 

for each a > 0. Then for each x(t) « Vfc we have lim Iifcx(t) = 0. 
t — M O 

Sketch of the proof. Using the properties of x(t) « Vk, Lemma 1 
and (1) we get 

oo 
0 <• / a;1 ^ ( s . t ) G(s,aka;

1(it>(s))Pk(it»(s),c)) ds <. |I^x(t) - c| 
t 

which leads to a contradiction. 
Theorem 2-. Let all assumptions of Theorem 1 be satisfied. Then, 

empty. If 4. is 

Denote r(t) = sup {e-£t0: i*(s)<.t}, m(t) = max{r(t),t}, t-ttQ. 

Theorem 2L_ Let the assumptions 1.- 4. be satisfied and suppose 

that : 

(H4) To each measurable function z(t) : J—*R there exists a measurable 

selector v(t) : J—»R such that v(t) € F(t,z(t)) a.e. on J. 

(H2) There exists a continuous function G±(t,u) : Jx[0,oo) —• [0,oo) 

such that : a) G (t,u) is nondecreasing in u for each fixed t«J; 
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b) |F(t,z)| < G^t.z) for each (t,z) « JxR; 
00 

c) X a^(s) ^ ( B , ^ ) Gl(s,aa;
1(p(s))Pk(p(s),t0)) ds < oo 

for some a > 0 and each t « J. 

Then (K) has a solution x(t) « Vfc defined on some interval [TQ ,00) „ 

TQ> tQ such that lim Lkx(t) = c * 0 . 
t—•oo 

Sketch of the proof. Let n-k be even, let 3. be satisfied and 

let ck > 0. To tQ we can find TQ> r(tQ) such that p(t) > tQ for each 

t>TQ. We seek the desired solution in the set 

Y = { u(t) € C[to,co) : «kPk(t,t0) < ao(t)u(t) < 0kPk(t,to) ' °Sc
<ck</?k} 

as a fixed point of the operator A : u(t) « Y 

Au(t) = a;*(t) { c k p k ( t , t 0 ) + x a ; 1 ^ ) x1a;1(s2) . . . x k ' X 1 ( s k ) 

co 0 0 0 

X a ^ ( s ) Q k + i ( s , s k ) v(*>(s)) ds d s k . . . d s ± , v(*>(t)) « M(u(p( t ) ) ) } , t>TQ 
8 k 

Au(t) = a;*(t) c k P k ( t , t 0 ) , tQ< t < T 0 , 
where M(u(i->(t))) is the set of all measurable selectors from 

F(t,u(*>(t))). 

Assume now that all assumptions of Theorem 1 are satisfied. Let 

x(t) « Vfc, k e {1,2,...,n-l}. Then we have 
00 

(4) 0 < X *C<s) G(s,|x(*>(s))|) ds < |Ln_lX(t)| < co . 

Our following considerations are based on this fact. Succesive in­

tegrations of (4), by respecting the fact that lim L.x(t) = 0, 
t—•oo 

and L0x(t), tl 
r(t) and m(t) lead to the inequality 

00 

(5) 0 < jyvfu) X a^(s) G( s , a ; 1 ( i - » ( s ) ) | L o x ( v ) | ) ds < |LQx(v)| 
m(v) 

for (t -) u < v , where 
v t t 

iyv,u) = X a^Ct^ A ^ ^ ) - / <*(t) ̂ (t^.t) dt dt^.-.d^. 
u u u 

Let 
00 

P(v) = X a'^s) G(s,a"1(*>(s))|L0x(v)|) ds . 
m(v) 

Then respecting once more the monotonicity of G we get 
00 

(6) 0 < X a^(s) G(s,aQ
1(p(s))Rk(v,u)p(v)) ds < p(v) . 

m(v) 
On the basis of (5) and (6) we are able to prove the following 

theorems ([4]). 

Theorem 4. Let all assumptions of Theorem 1 be satisfied. More­

over, assume that for each fixed t --: tQ 
(7) z-1G(t,z) is nondecreasing in z , z >0 

and for k e {1,2, ,n-l} 
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(8) lim sup R, (v,u) J a (s) c G(s,a *(<>(s))c) ds > 1 
K . . n O 

v—»oo m(v) 
for some c > 0 . Then the set V is empty. 

Theorem fL. Let all assumptions of Theorem 1 be satisfied. More­

over, assume that for each fixed t -£ t 
o 

(9) z G(t,z) is nonincreasing in z , z > 0 
and for k e {l,2,...,n-l} 

oo 

(10) lim sup / e^(s) c"1G(s,Rk(v,u)a~
1(^(s) )c) ds > 1 

v—->oo m(v) 
for some c > 0 . Then the set V is empty. 

From Theorems l.,2.,4.,5. we get the final theorem. 

Theorem fL. Let all assumptions of Theorem 1 be satisfied. 

a) If the assumptions l.,2.,3. hold and if (7) and (8) or (9) and 

(10) hold for k = l,2,...,n-l, then for n even all solutions of (E) 

are oscillatory and for n odd each solution x(t) of (E) is either 
oscillatory or lim L.x(t) = 0 , i = 0,1,...,n-1. 

t-H•oo 
b) If the assumptions l.,2.,4. hold and if (7) and (8) or (9) and 
(10) hold for k = 1,2,...,n-1, then for n even each solution x(t) of 
(E) is either oscillatory or lim L.x(t) = 0 , i = 0,1,...,n-1 or it 

t—•oo 

belongs to the class V and for n odd each solution x(t) of (E) is 
n 

oscillatory or belongs to the class V^. 
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