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Nonlinear Surface Waves under External

Forcing

KIRCHGASSNER K., STUTTGART, FRG

1 Reduction of nonlinear elliptic systems

In recent years quasilinear elliptic systems have been found to be reducible to
ordinary differential equations when considered in an unbounded domain @ =
R x D, where D C IR" is bounded and smooth ([6],[10], [12]). The reduction
can be achieved when bounded solutions are sought near a known solution being
independent of the unbounded variable z. The method applied is a combination of
arguments from elliptic systems and dynamical systems. Although the initial value
problem in z is not well posed for elliptic equations, the proofs for the existence
of a center manifold still work with some (nontrivial) modifications. For a good
introduction into the main ideas for the semilinear case c.f.[16]. This manifold
contains all solutions of small ’amplitude’, and these are determined as the flow
of a finite dimensional vector field.

The method has been successful by resolving a number of long standing open
problems. Let me mention just two, whose resolution I consider as particularly
satisfying: the Saint-Venant problem of nonlinear elasticity [13] and the existence
of solitary waves on the free surface of an inviscid fluid under the influence of
gravity and surface tension [1). The latter work required that the surface tension
is not too small, i.e. the 'Bond number’, measuring the relative strength of surface
forces to gravity forces, should be greater than one third.

In this contribution this result is reproduced with a method modifying the one
used in [1]. We add the additional difficulty of a steady external forcing and
describe the response completely. This elaborates our work in [7] and is, in its
discussion of the reduced system, identical with a remarkable analysis by Mielke
[11] for a physically different problem. Our main motivation, however, is the
wish, to present this new point of view for nonlinear elliptic systems to a wider
readership by describing a real but relatively simple problem of physical interest.
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2 The basic equations

The inviscid fluid is located in a domain IR x D¢, where D; = {(§,7)/0 < n <
2(£), ¢ € IR}, and 2(£) describes the free boundary (see Figure 1). We use nondi-
mensional quantities by taking k, the asymptotic height of the fluid layer, and the
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wave speed ¢ as reference length and velocity. Due to Galilean invariance we
may choose a moving coordinate system in which the motion is time independent.
The term € po(£) describes the external forcing. Thus € = 0 is the unforced
situation. We shall analyze the case of py having compact support and thus treat
the nonlinear interaction between a solitary wave, travelling with constant speed
¢, and a localized pressure wave moving with the same speed.

Considering irrotational flow we obtain

divy = curly=0, 0<n<z()
v = 0, T]=0
2.1
voz—v; = 0 1)

HoPP+p+Xz = C=const., n=2(¢) ,

where

h T

2’ - gh?
T is the coefficient of surface tension, b the Bond number. We seek solutions
satisfying

. 1
Jim e = () +000 (2:20)
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which correspond, due to the coordinate system moving in time, to solutions of
the Euler equation vanishing at infinity for ¢ = 0. The pressure p on the free
surface ) = 2(), satisfies

_ z"(f)

p(f) = —b(l + z,(e)’)yz + Cpo(f) . (22b)
We shall treat ¢ = 0 (unforced case) and ¢ # 0, po has compact support (forced
tase).

Let me mention a few contributions to this problem in the mathematical literature.
The case of pure gravity cnoidal (periodic) waves, (b = ¢ = 0) has ' been settled
by Levi-Civita [9] and Nekrasov [14], existence of solitary waves was shown by
Lavrentiev [8], Friedrichs and Hyers [5], and also by Ter Krikerov [15]. Finite
amplitude waves and the proof of Stokes’ conjecture was given by Amick and
Toland [2]. Capillary-gravity cnoidal waves (b > 0,6 = 0) were analyzed by
Beckert [3] and Zeidler [17]. The existence of solitary waves for b > 1 was proved
by Amick and the author in [1]. The forced case is en vogue in the applied
literature but essentially untouched mathematically, except for [7]. The case 0 <
b < 1,6 =0, seems to be of particular difficulty.

3 Transformations and Symmetries

For ¢ = 0 the system (2.1) is equivariant to translations in £ and reflections:
¢ — —£, properties which may be broken for € # 0. The stream function ¢ is
defined by

Op=-vy, Op=n, Yl=o=0

then 1 = n+ higher order terms holds. The almost identical transformations

z 1+2, v = 14V, n="V

and
W = JA+Wr+VE-1
W, = VB(1+W)!

are invertible whenever Z, V; resp. W; are sufficiently small in modulus.

(3.1b)

Via an elementary calculation one derives from (2.1) an equivalent system (for
small ;)
8w = A\, b)w + F(), b,¢,w) ) (3.2)
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where

B
w = | W | € CY(IRX)NCY(R,D(4))
W, (3.2a)
X = Rx(L0,1))?
D(4) = Rx(H'(0,1))’ n{W3(0) =0, Wy(1) = 5}

and subscript b indicates the boundedness of elements. The linear operator A
represents the F-derivature at w = 0 of A + F as a mapping from R x (H')? into
IR x (L2)?, observe that 3 is a scalar, and is given by

W) - m) 1
A\ b = —0,W; , W= / Widy . (3.3)
W, °

Observe that A € £ (D(A); X) has a compact resolvent in X. The symmetries
given above can be described as follows: set

1 0 0
R={0-101]|, TE=z4T (34)
0 0 1
then
AR = —RA, FyR = —RF, (A+ FR)r=1(A+ FR), (3.4a)

where Fy = F|.=¢. In short, we say that system (3.2) is reversible.

4 The unforced motion

Observe that the spectrum A consists of eigenvalues o of finite multiplicities,
which appear in pairs (¢, —g). Moreover, due to the ellipticity of A, only finitely
many can live on the imaginary axis :JR. This implies that XA = £, U X, where
Ty is finite and T, is confined to a double cone |Re o| < g|Im o|. If T, is empty,
it is easily seen that = 0 is an isolated solution. Therefore, the eigenvalues on
1R are ’critical’, as they may cause bifurcation. The eigenvalues are given by the
equation (c.f. [7])
(A —bo?)sine = o coso, ceC .
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The critical part Iy, i.e. all ¢ € ZA with |Re 0| small , is shown in Figure 2.

Figure 2

Observe that £A is infinite dimensional in the positive and negative halfplane.
The case we consider is A & 1,b > 1 fixed, then

Ao = A1,b) = (g ;) (4.1)
where Ay denotes the central part of A.
Let us decompose X according to the splitting & = £y U I, of TA
X=Xo0 X, A(X;nD(A4)) C X;
for j =1,2. Set w = wo + wy, then (3.2) reads

Frwg = Apwo+ j‘j'o(A, wo + wy) (4.2)
dwy, = Ayw+Fi(Awo+w),

where A := (), b,¢), F := F 4+ (A(\, b) — A(1,b))w and A(1,b) = Ao @ A;. For
(4.2) the initial value problem is not solvable, in general. Nevertheless , working
in spaces of bounded functions as given in (3.2a), one may still use concepts of
the theory of dynamical systems. In particular, a local center manifold exists. It
contains all sufficiently small bounded solutions. For a precise version and the
proofs see [10] and [12]. The only fact we shall exploit here, is the reducibility of
(4.2) to a system in wo. Under the assumptions stated, w, is a pointwise smooth
function of wy

wy = h(A,z,w0,) = K\, b,wo) + h*(A, b,€,z,w0) | (4.3)

where h® = O((X — 1)wo + |wol?), h* = O(e). h° describes the reduction in the
unforced case, i.e. € = 0. It inherits the reversibility from the original equations
and therefore satisfies

R%(\, b, Rowo) = Rih°(A,b,w), R=Ro®R;.
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Therefore, we can reduce (4.2) by (4.3) to the system
aswo = Aowo + ﬁo(Av wo + h(A, *y wﬂ)) . (44)

The case of interest is s := A — 1 > 0. As Figure 2 shows, the eigenvalues of A
are real then. Therefore, (4.4) is a first order system in IR?. For ¢ = 0 we have

Bewo = Aowo + FP(X, b, wo + h°(), b, wo)) (4.5)

and this system is reversible with respect to

(5 %)

First we solve (4.5), the unforced case. We suppress b and write p = A — 1.
According to [4], (4.5) can be transformed into (c.£.[7])

O:3 = Aos + Ni(p,s) + R, (4.6)

where

A(.)Nk(l‘)s) = DlNk(/"v")Aaa (4'7)
for all s € R®. Here A} denotes the adjoint of Ag,k any integer k > 2,Ni a
polynominal in s of order k, and Nx = O(|s]> + pls]), Rx = O(|s|*+?). Write
Ni = (N1, N3),8 = (31,83) € IR?, where wo = 8101 + 8203, Aoo =0, Ao1 = o,
then (4.1) and (4.7) yield

6,,N1 + .s.6.,N, =

0
4.8
3,,Ng+s.6.,N, = N1 . ( )

Observe that the first equation implies

- W(‘glv") ]
where ¢, is a polynominal in s, of degree k.

In view of the relation NyRo = —RoN; we obtain Ny = 0, since ¢(s1,p) =
—¢(s1,#) = 0. Similarly, the second equation of (4.8) shows now that N, is
independent of 3;. Therefore, the normal form of (4.4)(set Rx = 0 in (4.6)) reads

sy = s

(4.9)
6232 ¢(311 ") = 553_—1'(/‘31 - %3; + 0(/‘231 + 3:1;)) 7

where the explicit constants follow by setting A° = 0 in (4.5)(c.f.[]). Let ¢ be a
primitive of o, then s3 — 2¢(sy, p) is an integral of (4.9) of each p. If u is positive,
then s} — 2¢(s1, 1) = 0 describes a homoclinic orbit connecting the saddle point
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8; = 83 = 0 with itself. It is unique up to shifts in z; moreover s;(z) > 0 for all
z € R. Since 3;(z) = —Z(z) holds in first approximation, this homoclinic orbit
leads to a solitary wave of depression.

Observe that the scaling s1(z) = pSi(u'/3z), s2(z) = p¥/2S:(u'/?z) leads to the
limiting equation :
3

5i=5 Si=g5(

S1= 357+ 004). 49

This gives S; in lowest order for 4 = 0. Moreover it shows the robustness of (4.9")
to reversible pertubations. First, observe that R; in (4.6) must be-odd in s;, Rz
even. Therefore 03 = 82 + Ry(s1,82),01 = s, is invertible near s; = s; = 0 and
yields (4.6) with R; = 0 and s; replaced by o;. After scaling as above, we obtain
for (4.6) the system (4.9).

Let g denote the (unique) even homoclinic solution s; of (4.9') and Q its scaled
version. Write S; = Q * Z; then (4.9') yields

Z} — 12y = 20;Q2, + (21, 23, ) » (4.10)

where r = 0(2} + 2} + p),a1 = 1/(b— 1),8; = —3a;. Observe that (4.10) leaves
even functions Z; even. Moreover Z{ —a,Z, has an inverse in C(IR) which denote
by K(t). Therefore (4.10) can be written

2y =2a;K *(QZ:) + K (21, 23, ), (4.11)

where * denotes the convolution.K * (QZ;) defines a linear compact operator
in C)(IR) in view of the exponential decay of Q (like exp—(a;)!/?|z[)). Since
2a2K * (Q2,;) has not the eigenvalue 1 (the only function qualifiying is Z}, which
is odd), the implicit function theorem implies the local solvability of (4.9’) near
Z| = 0; B = 0.

Proposition 4.1 (c.f.[1])

For given b > 1, there exists a right neighbourhood of A = 1 such that (4.4)
has a unique even homoclinic solution, decaying to zero at infinity. Therefore,
the original problem (2.1),(2.2) has a solitary wave solution for these parameter
values. It is unique up to translations in ¢ and it is a wave of depression.

5 Local forcing

It is remarkable that the reduction works also when the vectorfield in (3.2) is
nonautonomous (depends explicitly on z). The only assumption needed is, that
the linearization A at w = 0 is autonomous. For the proof see Mielke [10]. In
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(4.3) we have already given the general form of the reduction function A, and h?
represents the effect of nonautonomy, in our case the external pressure epy. This
term will in general break the reversibility. We assume here that py has compact
support, thus, the vectorfield is asymptotically autonomous. This again implies
that h! = 0 (ezp(—A|z])) at |z| = oo for any A > 0 (c.f.[11]).

The explicit calculations, being relatively straight forward, are suppressed. For
details see [7],p. 153f. We obtain (9s = s})

8] = s
sy = 3-53_-1(;451 - %3? + Ry(s1,92,p)) (5.1)
—525(po(2) + Rar(z,81, 92,6, 1)) ,

where the remainder terms R,, Ry, are of the order O(us? + s3 + s3) resp. O(e)
uniformly in z € IR and in bounded sets of p,s;,s;. Moreover, we have the
estimate

(B} (py€,2,8)] < leleo(D, 1)ezp(—Az])

for any A and max (||, |€|) < 4. Therefore, since k! determines Ry, it follows

[Rar(2, 8,6, )| < leles(B,7)(lul + [s1] + sal)ezp(-Alz]) . (52)

We assume as before that u is positive. Let us scale as in the preceding section,
and set 1
n=eulb-2), E=ptlls
Then (5.1) yields
Po
’7< Py >
where Ro = 0(p) and Ry = 0(u'/*n exp(—Al€|p=/?) and Py(€) = po(z), < Po >=
22 Po(€)6¢, which we assume to be nonzero.

3
5{, -5+ ESI’ - =R+ Ry s (5.3)

Since Py(€)/ < Po > converges pointwise to 0 for £ # 0 and its mean value is one,
it is natural to consider as limiting equation for u — 0.

SI— S+ gs,’ —nb=0, (5.4)

where & is the Dirac functional concentrated at 0. As will be shown, smooth
solutions of (5.3) can bz constructed as pertubations of (5.4). For a discussion of
the complete solution picture see [11].

Solutions of (5.4) are obtained, by solving (5.4) separately for £ > 0 and £ < 0,
yielding S} and S;. We add the additional constraint

Si(~e0)=0,  Sf(0)-S7(0)=1n.
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Thus we can construct all bounded solutions of (5.4) by intersecting the (identical)
phase portraits P*, where P+ is shifted, relative to P~, by the amount of 5 parallel
to the Sj-axis. We obtain piecewise continously differentiable functions, which
may have jumps in the derivative at £ = 0 only. For an examplc sec Figure 3.

The robustness of these functions to perturbations is proved in the Banachspace.

Y = {a€CYR)/(¢a)- € CY—20,0],u; € C}[0,00)}
2
lall, = lalo+ 3-{laDlos +1aDe/?]o-} ,
where
lafo = supla(§)l, lalo+ = supla(é)l
R R
ap = dg, -
S
T
Figure 3

Assume that S° € Y is a solution of (5.4) for some 5 3 0. Since it vanishes at —oo,
it coincides in (—o0,0) either with part of the homoclinic solution constructed in
section 4 or with the other part of the unstable manifold of 0. In particular
52 = S|~ is of one sign.

Lemma 5.1

Let S° € Y be as described above and assume S°(+00) = 0. Then there exists a
unique solution S; € Y of (5.3) satisfying

1S, = 5°ll, = O .

Proof: Observe that §; € Y implies §; = 8,$; € C(Rs). It may have a dis-
continuity at 0. Therefore, R; in (5.3) have the same property. We define
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K(z) = —ezp(—|z|)/2, then Kf € Y if f € CY(R.), where Kf denotes the
convolution. Moreover we have K8, = —ezp(—|¢])/2. Therefore, S; solves

§i= = Le Kl 4 o - SKST+T(Suin), (55)
where
1 1
_ 1 Py
B <hoihtse

Since the support of P, is contained in an interval of length O(u!/?), we have
IToll, < Cip*/? and also [|Ty(Si;p)ll, < Cip

uniformly in compact sets of n, 4 and S;. As a whole, T is Lipschitz continous in
Y with a Lipschitz constant O(u'/?). Set S; = S° + Z, then we obtain

Z+3KSZ = ~SKZ* + 1Ty + Ti(S°+ Zin). (5.6)

It suffices to show, since T and T vanish for 4 = 0, that id+3K S° has a bounded
inverse in Y. Since S°(+00) = 0, we have S° = 0(ezp(—|¢|) for large £, and thus
3K S° is compact in Y. It remains to be shown that —1 is not an eigenvalue of
3K S°.

Observe that $%(+oc0) = 0 implies that S° is an even function. Moreover, § is
the only solution in Y of Z” + 35°Z = 0. Multiplication by S* and integration
yields

(S¥2'-5"2Z)(¢)=0

for all ¢ # 0. Therefore, —1 is no spectral point of 3K S° and the Lemma is proved.

The solution S; just constructed solves (5.3) in the classical sence for £ # 0. Hence
S" is continous, except at ¢ = 0. Therefore S| € C{(IR) for p > 0, which implies,
via a bootstrapping-argument, that S; € C¥(IR) for any k € IV given, whenever
p>0.

The only case remaining is 5%(+00) # 0. Then 53 = S, is periodic, as is easily
seen from the phase diagram of (5.4). Again we set S; = S°+ Z and argue as for
(5.5) and (5.6). It remains to be shown that Z + 3KS°Z has a continous inverse
in Y. To see this we consider for Zy = Z|p, and invert separately on R_ and
R,. Define Z_ = §5° + U where 6§ € IR is an additional parameter. We obtain

U" - U +35°U
U(-o0) = U(0)

F - $5(50)?

b, (5.7
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where F € C{(—o00,0) with F = 0(ezp(£/2)) as € = —oo. The only solution of the
homogeneous problem (F = § = 0) is 8,5°. The range of the left side is closed,
since K_S? is compact in C(—o0,0), where

K_(¢,t) = —e'sinh¢, fort< ¢

and K_(t,£) = K_(¢,t). Therefore, we can apply Fredholm’s alternative and

conclude existence if 2
=y L. o

i °m U(SeYde =0.

To conclude the solvability in [0, 00], observe that S9 is periodic with period
27 /wo. To normalize the period to 21 we set w¢ =t and S9(£) = so(t), similarly
Z4(€) = z(t). Define 2(t) = 830(t) + sh(t) + v(t) and obtain

and uniqueness if

wh" —v+43sv = f—36s]

5.8
v(0)=0, v 27— periodic . (58)

We use w as a parameter which is close to wp. Observe that s{, solves uniquely the
homogeneous problem (5.8) for w = wo. Applying again the Fredholm alternative
we conclude the unique solviability of (5.8) under the following conditions

2 2 2r
—(w? - wd) ‘/o s32dt = / n fshdt, / vspdt =0 .
o o

This determines w and v. Since 2(0) = Z,(0) = 6540 = Z_(0) holds, in view of
the continuity of S°, we have shown

Theorem

Given any solution S° of (5.4) in Y for 5 # 0, then there exists a unique solution
S' € Y of (5.3) satisfying ||S; — s, = O(p1/?) as p tends to +0. Moreover
51 € C¥(R) for u > 0.

Thus we justified the limit equation (5.4). The further reaching question, whether
all solutions of small amplitude can be constructed in this way, has been answered
affirmatively by Mielke. We refer the reader to [11].
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