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PRESSURE JUMPS IN THE DAM PROBLEMS 

LUCKHAUS S., BONN , FRG 

The phenomenon modelled is Che flow of water through earth dams. Let the region 

occupied by the dam be denoted by fi,p the water pressure, 0. the porosity of the 

dam, s the (relative) water saturation, J the water flux, p the water density 

and e the unit vector in the opposite direction of gravity. Then the flow is 

governed by the continuity equation-

and Darcy's law 

J ~ (Vp -r pez) 

where one often assumes the constant to depend on s and x, e.g. 

3 -- -a(x) K(s) (Vp + pe ) 
z 

with a bounded away from zero, K monotone and continuous with K(l) • 1. For the 

relationship between s and p there are two models, 

a small scale rarodel (saturated, unsaturated flow) where s • s(p) is a 

continuous monotone function and a large scale (free boundary) model where 

0 < s < 1, p > 0, (1 - s).p E 0 . 

The boundary conditions on the impervious part of the boundary are (v denoting 

the outer normal) 

J - v =» 0 in 1\. 
N 

and on the pervious part T 

p - p_ > 0 on the boundary to water 

p < p - 0 and J • v >. 0 on the boundary to air 

(and for the small scale model p < pD -> J - v - 0) the so called outflow 

condition. 

Taken together these equations have the weak formulation (for an initial water 

saturation s ) 
° T 
- J J o s a c - J © s p(o) + 

o a n 
T 
J J (a K(s) Vp VC + ap K(s) 9^) <• 0 
o n 

(1) 
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for all C € Ul
2 ((0,T) x n) with £(T,.) = 0 , i; > 0 on ^ and C PD 

where (p+- p ) € (u € L2(0,T,H2(ft)) | U|r =0} and for the large scale model 

0 

(2) 0 < s <> 1 , p > 0 , (1 - s) p = 0 . 

Since in this free boundary problem there is no time derivative for p, it 

is natural to ask whether p is a continuous function in time. That this is not 

the case follows from the following counter example: 

Let S. be a cylindrical domain 

ft - ft' x (z ,0) with z < 0 
o' o 

r„ = ft' x {z } u 9ftf x (z ,o) 
N o O 
p = p = const > 0 on Tn = (0> x n

f 
r *o D 

s = 0 , p = 0 , 0 - = a - - l . 

Then the solution can be given explicitely 

. - { ' ^ " ^ p - ' { • • • V.P. 

I for z ̂ Ғ ^ p (1 + -д|-
Г
-)

+
£. гQ < - V2?"f 

- - *o 
0 otherwise ^ p f. z > - V2p t' 

*o o
 r

o 

So there occurs a jump in pressure allover the domain at the time when the 

free boundary hits the impervious boundary. 

So the possible conjecture left is that pressure jumps up but not down. 

And this can be proved under additional assumptions. I shall state the 

theorem with more regularity assumptions than are actually necessary to save 

some writing. The result has been achieved in collaboration with G. Gilardi, 

Pavia. 

Theorem (Gilardi-L.) 

suppose 9ft e c
2
 ; r

D
 c an ; r

N
 = an ̂  r

D
 ; r , r

D
 e c

2
 ; a e c

2
(ft), 

0 € c!(5) , p D € C
1,0t((0,T) x n, 

and suppose 

9 a > 0 , v < ft on r_, , where v is the outer normal then: 
z ' z N 

3+p € 33t<<0,T) x n) , 9+p_ € LOO((O,T) x n) . 

Remark the assumptions on 9 a and v | are crucial for the method of proof. 
Z Z !N 

If 9 a > 0 it is a conjecture that s is a characteristic function. 
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Heuristically then the argument goes as follows (for simplicity take 

a = 0 = p = O 3_p is harmonic in s = 1 , with Neumann data on L, and C 

Dirichlet data on r . On the free boundary rf - 9{s - 1} M ft one has 

3tp - |Vp| - 9trf = |Vp|(|Vp| + vf- e z) > - 1 (vf- e z ) 2 > - 1 . 

So there is a bound on 3 p. 

Sketch of proof. 

h 1 t 1 
To make this precise let 9 p = (p ( t ) - -- / p(T)dT) ----- • 

t n t_h *-*-

One has to show that 

<LP < C , C large negative implies 

3 p superharmonic. 

It is sufficient to show, since p is subharmonic and harmonic whenever 

s E 1 in an open set, 

. t 
-9 / p(T,x) dT > |c| implies s ( t , * ) = 1 in B, (x) . 

h t-h 

Now take a ball falling with characteristic speed 

B m B«, (x + (t - T)e ) , one calculates 
3T / (1 - s ) = - / Ap. 
T B B 

Now for subharmonic nonnegative p on has 

Lemma: Let u >. 0 , Au >. 0 in B than there exists a constant C(n) with 

/ A u > - ^ / u[meas ({u = 0} n B )]1"'1/n . 
pn+1 B p 

w P 
The Lemma implies 

£->! f „ r /̂  _ .vn1"!/* 3 T / (1 - s ) < - ^ J p [meas {p = 0}]1 

. - - a - / P [/(.- .)] ,- , /B 

h B B 

-J-fp(T.x) [ / (1 " 8)] 
i B 

2h since [/(1 - s)(t - h)]n < a£ 

t 2 n - " 2 
one sees tha t for / p(T,x) > — u>n c h 

t -h 
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(
Э
tP. - ~Г)= / (1 - s)(t) «- 0. Which implies that max ( S^p,

 n
 JLs superharmonic 

B 

in ft, - {x|d(x,(fi) > 2h}. Dealing in a similar way with the boundary strip 

one gets the result. 

Appendix, proof of the lemma (w.l.og. p - \ ) : 

Let u, be the harmonic continuation of the boundary value of u. One has for 

any 3 > 0 the following capacity estimate 

/ Au « / A(u - i^) > c3[meas ({u - u
h
 > 3})]

1 _ 2 / n 

So if f u < -r f u.nothing has to be proved. Otherwise define 
B i B< 

T :- [meas ({u - 0})]
n
 , T < j w.l.o.g. l

St
case : meas ({u-0} n B ) > j T

n 

u,(x) > c f u (1 - |x|) by the Hopf maximum principle, et 3 - c f u T in 

the capacity estimate to prove the lemma. 2 case : meas ({u=0} n B, ) < -r- r , 

then there is V > 1-r with H
n H
(3B

r
i n {u »- 0}) > j T

11
"

1
 . 

Define u, by, u, -- u in 3B. t) 3B
r
, , A u, - u in Bj ̂  (3 B-,,) f 

A u, >. 0 in B, and /--"̂  < /Au > as u, > u. But by Hopf
 f
s maximum principle 

{u-0}n3B
r
,
 B

j_ 
I 1 
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