
EQUADIFF 7

Klaus R. Schneider
Relaxation oscillations in systems with different time scales

In: Jaroslav Kurzweil (ed.): Equadiff 7, Proceedings of the 7th Czechoslovak Conference
on Differential Equations and Their Applications held in Prague, 1989. BSB B.G.
Teubner Verlagsgesellschaft, Leipzig, 1990. Teubner-Texte zur Mathematik, Bd. 118.
pp. 114--117.

Persistent URL: http://dml.cz/dmlcz/702339

Terms of use:
© BSB B.G. Teubner Verlagsgesellschaft, 1990

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides
access to digitized documents strictly for personal use. Each copy of any part of this
document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech
Digital Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/702339
http://project.dml.cz


RELAXATION OSCILLATIONS IN SYSTEMS 
WITH DIFFERENT TIME SCALES 

SCHNEIDER K.R., BERLIN, GDR 

Roughly speaking, a relaxation oscillation (RO) is a periodic motion 
where at least one component is nearly a discontinuous periodic func­
tion. This property suggests to look for ROs as solutions of dynamical 
systems of the type 

(1) {jf = f(x,y, l ,<*), g£ = g(x,y, £ , « ) , 

where x€R n, y£R m, <xER p, L is a small parameter, f and g 
are sufficiently smooth. 
A system of type (1) is called a singularly perturbed autonomous dif­
ferential system when g(x,y,0,o() is not identically zero. It repre­
sents a differential system with at least two time-scales. 
Examples of relaxation oscillations can be found in engineering as well 
as in biosciences [2,5], Another motivating example is the existence 
of periodic travelling waves u(t,x) = U(x-ct) in reaction-diffusion 
systems [12,13] of the form 

(2) -§T = * A u + f<u>*>> U £ R R » 

where v> measures the diffusion, X is some parameter, and c repre­
sents the velocity of propagation. This problem is equivalent to the 
question for periodic solutions of the differential equation 

* ^ + c *7 + f < u > ^ = ° • 
dzz az 

9 
Setting z =: -CT , t := v/c we obtain the system 

(3) $ = V , t $L= V - f(U,X) . 

In case t to be small (3) is a singularly perturbed system of type 

(1). 
The system 

(4) BI = f(x,y,0,<x ) , 0 = g(x,y, £ , oc) , 

is called the degenerate system to (1). It represents a differential 
algebraic system. 
There are two basic approaches in establishing ROs in (1) depending on 
the property whether the system (4) defines a dynamical system on some 
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manifold defined by g(x,y,0,<* ) = 0 or not. The latter case was stud­

ied by Pontrjagin, Mishchenko and Rozov [8,9] for the following class 

of differential systems 

(5) £f = f(x,y), I % - g(x,y) . 

Introducing the concept of a discontinuous solution of the correspond­

ing degenerate system and using the asymptotic expansion of a solution 

of (5) with respect to t they prove a theorem on the existence of a 

unique stable (unstable) RO near a unique stable (unstable) disconti­

nuous periodic solution 77 in case n=m=l . In higher dimensional 

cases they can prove only the existence of a RO near 77 , there is no 

result on stability and uniqueness. In what follows we indicate how 

these results can be improved. 

For I t 0 we introduce the fast time r by t =: iv and rewrite 

(1) in the form 

(6) ^|= f(x,y,L,cO, {j* = 0(x,y, t ,<*) . 

For I t 0 , the systems (1) and (3) have the same phase picture. Let 
us assume that (6) has a periodic solution for 0 < t ^ tn , let R M 

be the corresponding orbit. We suppose P t ̂  to converge to a closed 

invariant curve P of (6) as £.—> 0 . P- .. is said to be an o, oc fc <<*• 
intrinsic RO if P, . is near r . and if Pn contains at 

t/OC o,o( o,* 

least two different continua of equilibria of (6) for I - 0 and their 

connecting orbits. 

The problem of existence of an intrinsic RO can be treated as a problem 

of persistence of some closed invariant curve of the system (6) for 

£ = 0 as t varies. By this way, using results on the persistence of 

integral manifolds [6j the theorem of Mishchenko and Rozov in case 

n=m = l can be extended to systems o*f type ( 1 ) , at the same time the 

smoothness conditions on f and g may be relaxed. Details can be 

found in a forthcoming paper. 

To be able to obtain a uniqueness and stability result for higher order 

systems we consider the case where the degenerate system (4) defines a 

dynamical system on some manifold frl^ : = [(x,y)€Rn+ln : y = y(x,o<)| 

where g(x, u>(x, <*) ,0, <* ) = 0 . The corresponding dynamical system is 

called the reduced systerir to frl^ 
(7) ^| = f(x, y(x,*),0,oO =: f(x,<X) . 

It is well-known that under some conditions the existence of a periodic 

solution x = p(t,<x ) of the reduced system (7) implies the existence 

of a periodic solution (x (t, L , <* ) ,y_(t, t, , c* )) of the full system 
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(1) for sufficiently small t (Theorem of Anosov [l] , theory of in­

tegral manifolds [3,7,ll]). In this context we have to note that if 

p(t, ex ) is no RO then the same ho Ids for (x(t,£,«),y(t, £ , * ) ) . 

Thus, in this situation the parameter t, can be characterized only as 

a continuation parameter, not as parameter generating a RO. From that 

reason we assume that there exists a component » . of the vector <x 

which is responsible for the generation of an intrinsic RO of (7) at 

<x = <x . That means that the reduced system (7) can be rewritten in 

the form 

dx^ _ dx2 

-j--- "-" - ^ V ^ ' %^* % dF~ = f2(xl'x2'X) 

such that the functions f,, f« guarantee the existence of a unique 

stable (unstable) RO near some closed curve P for sufficiently small 

X . The corresponding RO of the full system (1) is called a lifted RO. 

It is obvious that a system (1) with a lifted RO has at least three 

time-scales. 

As an application of this approach we consider the existence of relaxa-
2 

tion wave trains in (2) for small t : = \>/c . This problem is equi­
valent to the existence of a RO of the system (3). The corresponding 
reduced system reads 

f - f(u,x) . 

Let f be defined by 

(8) f1(u1,u2) := u2 , 

f2(u1,u2) := X(l-u1)u2 - u1 , \>0 . 

In this case - it represents the van der Pol oscillator with diffusion 

- the reduced system is equivalent to van der Pol's equation 

(9) - % • A [ y 2 - l ] % • y - 0 . 
dt 

_ o 
S e t t i n g T = Xi> , & = X~ ( 9 ) i s e q u i v a l e n t to the system 

dx dy y 
d ^ = " y » d ^ = x " 3 + y ' 

whose right hand side satisfies the theorem of Mishchenko and Rozov 

[9], that is (9) has for small at a unique stable intrinsic RO (see 

also [lO]). Thus, the full system (3) with f defined in (8) has a 

unique stable lifted RO for 0< t< t (at ) . The same approach yields 
a unique stable RO in the Oregonator model of the Belousov-Zhabotinskii 

-reaction [4,13] and in Nobel's model of the Purkinje fiber [2]. 
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