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FINITE ELEMENT METHODS FOR LINEAR 
COUPLED THERMOELASTICITT 

Alexander Zenisek 
Brnof Czechoslovakia 

According to [l]f the statical two-dimensional problem of line­
ar coupled thermoelasticity can be formulated in the following wayi 
Let il be a bounded domain in the x^Xg-plane with a sufficiently 
smooth boundary H Find a displacement vector u(x.fx2#t) and a tem­
perature T(x^fx2,t) which satisfy the following equations and 
boundary and initial conditions: 

(1) T f i i + Q - c^T + c2Tpujf j in il X (0,t*] 

(2) <?±if j • ^ - 0 (i - lf 2) in XI X (0,t*J 

(3) T(x 1 f x 2 f t ) | p - T(x v x 2 ) f t > 0 

(4) u ^ x ^ . t ) ^ - 3 ± ( x 1 f x 2 ) ( i - l f 2 ) , t > 0 

(6) T(X>|fx2f0) - T0(x1fx2)f ( x 1 f x 2 ) € i l 

(7) ui(x^»x2»°) " uio(xi'x2) C1 " l'*)' (Vx2)€ j Q-
where 
(s) eru - D i j k l[£k l - OC(T - Tr)cTkl] 
(9) C±i - O-i.J • « j .1V-
(10) Didkl«id fiki > <*"<> &±i ^±i V^w *°b ' con8t > °-
A summation convention over a repeated subscript is adopted. A com­
ma is employed to denote partial differentiation with respect to 
spatial coordinates and a dot denotes the derivative with respect 
to time. Thus equation (l) is the coupled heat equation; the sym­
bol Q denotes a prescribed rate of internal heat generation per 
unit volume, ĉ  and c2 are positive constants depending only on 
the material of a considered body and T p is a positive constant 
which has the meaning of the temperature for which the material is 
stress-free. Equations (2) are Cauchy's equations of equilibrium, 
the symbols X^f L denote prescribed components of body forces per 
unit volume. The functions on the right-hand sides of relations 
(3) - (7) are prescribed functions. The symbols //» -3 d e n o t e *wo 

disjoint subsets of P such that mes /^ > 0 and p - /J + /][. In 
equation (j)f V* and V> are components of the outward unit nor­
mal to P. In equation (8)f OC is the coefficient of linear thermal 
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expansion, cT~. is the Kronecker delta and DjH],.-i are material con­
stants. We consider isotropic materials only. 

In what follows we shall suppose that the problem (l) - (lo) 
has a solution uf T. Then, according to [l, pp. 38 - 40] , this so­
lution is unique. 

We shall solve the problem (l) - (lo) by the finite element 
method using curved triangular elements and numerical integration* 
We approximate the domain XI by a domain jfln the boundary rZ of 
which consists of arcs of degree n. These arcs are the curved sides 
of curved triangles. On the triangulation ^ of Jl n we shall con­
struct two finite element spacer? V n and W^ which are finite dimen­
sional subspaces of C^Q-il^). For a given t • tm the displacement 
field u will be approximated in the space V n X V n and the tempera­
ture field T in the space Wn. 

In applications we usually choose n - 3. In this case the bound­
ary P can be approximated piecewise either by arcs of the Hermite 
type or by arcs of the Lagrange type. The construction of the cor­
responding spaces V n can be found in [2], [-f]f [5]. The spaces V n 

have the following interpolation property: If f €Hn+^(Xln) and 
fjG V n is the interpolate of f then 

» f - M;,,-i h«
 cbn+^ll*ll*M,.ah 0 " 0,-) 

where the constant C does not depend on h and f. 
In the case of curved elements the construction of the space 

Wn depends on the choice of the space Vn. We choose p < n (usually 
p - n -*1) and construct the space W^ in such a way (details are 
described in [8]) that it has the following interpolation propertgrj 
If f^H^^JuLj^ and ̂ 6 % is the interpolate of f then 

' I ' - ' - l id . -^^^iI ' lW, , (--«•*). 
It should be noted that in the case of polygonal boundary P 

the spaces V, and W_ can be constructed quite indepedently. 

It is well-known that all numerical computations in the case 

of both curved and classical triangles are carried out on the unit 

triangle K Q which lies in the £,£2-plane and has the vertices 

(0f0), (1,0), (o,l) (see, e.g., [2], [5],[
63)»Let m Choose on K^ 

and on the segment [Ofi] certain quadrature formulas (see Theorem 

l) and using them let us compute approximately the integrals 

\(?>") - L v»i w-i t o t (Ttw)0 A - J vwdx f 

ah(v.w)- f B i j k ^ i ^ ^ ^ a x . 
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V Һ O - { v Є V h : v - O o n Г ы ) , vhu 

W Һ O " { W € V w " ° o n ih}» w Һ T . 

(-2.2)0,O.
h
 " j 'i'i^ ' < 2 h ^ > / 7

: )
 " J* Phi

1
'! *» 

A
h th2 

where p ^ denotes the function which we obtain by ••transferring" 

the function p^ from the curve fZ onto the curve ̂ 2 (details are 

in [6])f /^p oeing the approximation of /I. Then we obtain the 

forms D^v.w), (vfw)n, an(vfw)f (vfw)h, <P h,v> n. 

Further, let us define the sets 

. {v€V h s v - u f r o n / y , 

j w e y w - Tapr o n / J ) 

where f^A is the approximation of jTJ and u
a p lg Vh and f

 a p r 6 Wh are 
the interpolates of the functions u. and T, respectively. 

Let us choose an integer Mf set At - t /M and define tm » 
• mA t (i • Oflf...9M). Let us use the notation f

111 s fm(xifx2') • 
• f(x^fX2fX-i4t). If we use one-step A-stable methods for the time 
discretization then we can define the discrete problem for approxi­
mate solving the variational problem which corresponds to the prob­
lem (l) - (lo) in the following way: 

For each m - Of if... f M - 1 find a vector u ^ 6 V n u X V^u and 
a function T ^ ^ W M such that 

en) w i /vrd.-) * c/z«aT .̂-X * 

(1-) -h^jST4^) - C3(rAdC
d " Vi.i)h -

" ( i / V d ^ h + <&..2>h Vv€Vh 0X VhQ 

(13) *£ - ssrov -a. TS - "src-H^) 
where c_ i s a constant depending only on D j . k l and OC, TSj^e Wn i s 
an approximation of the function TQf vffir€ Vn X Vn i s an approxi­
mation of the vector uQ and 

(l*) oc0 - - i , o^ - i, fi0 - 0 , /3j - i - ® 
where (§):£ 1/2 is any real number. 

Theorem 1. Let the boundary / b e of class Cn+ . Let every tri-
angulation Xj^ satisfy the condition E/h ̂ c Q f where cQ » const >Of 

E * min h-*. and h - max h-. Let a Quadrature formula on the unit 
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triangle K Q for calculation of the form Dh(
vtw) be of degree of 

precision 2p - i. Let quadrature formulas on K Q for calculation 
of the forms (vt^)^, (z>.2)h a*1*1 ̂ (zfZ) *e °* degree of precision 
2n - 2. Let a quadrature formula on the unit segment [o,i] for cal­
culation of the form ^P^»Z^h t e o f deSr©e of precision 2n - i. 
Let the exact solution T, u of the problem (l) - (lo) satisfy 

3^/3^6L°°(H^3(a)), a V ^ e i 0 0 ^ ) ) (- - o,...„H. 
i - 1,2} where q is the order of the (*) -method (q « 1 for © < 1/2, 
q - 2 for © - 1/2). Let Q€I?° ( H P + ' , ( J 1 ) ) , Xi€L

0O(Hn(Il)). Then 
for sufficiently small h there exists one and only one solution 
Tg, £* (m - !,...»M) of the problem (ll) - ( u ) and it holds 

WT - Sfi 111,SLh * W - * H O..Clh 4 C (** .> h-*< • tf- + ^ 
where 0 is a constant independent on h and 2it, u and T are the 

Calderon extensions of u and T, respectively, and 

r and on being the RLtz approximations of uf and T, respectively. 

Theorem 1 is proved in [&]• The proof is a generalization of 
devices used in [3], [6] and [7]. The obtained result can be ex­
tended to the case of two-step A-stable methods. 
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