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GALERKIN-PINITE ELEMENT SOLUTION OF NONLINEAR EVOLUTION PROBLEMS 

Milos Zlamal 

Brno, CSSR 

1. Introduction 

The generalized Galerkin method for the solution of evolution 

problems consists of the following steps: 1) We formulate the given 

problem in a variational form. 2) We discretize the problem in space, 

i.e. we consider a family {v ], 0 < h < h , of finite dimensional 
subspaces of the basic Banach space V such that lim dist (V , v) - 0 

v h n"*° + 

V v€V (see Necas [10J p. 47) and in V we define a semidiscrete 

solution by means of a discrete analog of the variational formulation 

determining the exact solution. 3) To compute this solution means to 

solve a system of ordinary differential equations. Solving this sys­

tem numerically we get a completely discretized approximate solution. 

In case of nonlinear problems the application of linear multistep 

methods has advantage in that we are often able to linearize the 

resulting scheme without lowering the accuracy. We restrict ourselves 

to a narrow class of linear multistep methods: to A-stable methods. 

These methods lead to unconditionally stable schemes fulfilling cer­

tain energy inequalities. Both these properties are desirable, the 

other providing a simple way for the derivation of apriori error 

estimates. 

First we describe a class of linear multistep methods considered 

in the sequel. If we apply linear multistep methods to the scalar 

equation x - f(x, t) we get a scheme of the form 

(1.D n «vm+* • A t * = fVn+j> £n • f(*n> v » *n • n A t -
j-0 J j-Ol J n n 

According to a classical result of Dahlquist [3] A-stable methods 

cannot have a greater order of accuracy than 2. Therefore, we re­

strict ourselves to one- and two-step methods (k - 1,2). Normalized 
by } " &. - 1 all such A-stable methods are (see Liniger [8]) 

j-oP 

°S " ^ o " -1' Pi " 1 -Q>f>o -Q' 0" 7 1 £ k " 1-
(1.2)^ - 1 - 2*2,oco. -1 *o<2, ̂  « ^ + * 2 - 2f2, po- \ -oi2 *(2>2, 

7 ^ 2 > 7*2 « k- 2. oc ž 1 * VІ 
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The order q is equal to 1 if k - 1 and & < I and 2 if k - 1 and 
~ i -* 

&" I or k • 2. Three best known special schemes are 

xn+1 _ xn . A-t £n*1 Xn*1 . xn „ 1at[£n*1 , fn1 
(1.3) z L J 

3 n+2 7 n*1 . 1 vn A -n;*2 x x - Z x + w x • .at r • 

The schemes (1.2) fulfill energy inequalities. Let V be a vector 
space and b(u, v) be a bilinear symmetric form on VxV. We assume 
that b(u, v) is nonnegative, i.e. 

0 - b(u, u) -. |u(2 Vu e V. 

Consider the sequence 

s n - b(E>H un+J, i s . un+J) 

where un € V, n - 0 , 1 , . . . . Then (see Zlamal [ l2 ] and [13]) 
i m I 2 * fc"1 . 4 i 2 m - k n v 

(1.4) | u m | - C - J — l u M • C 2 I Z : S n , m * k . 
1 j-T5 z n-0 

Here C|, C2 are positive constants depending on the coefficients*., 
ft. only. The two important choices of V are: 1) V - L (Q) and 
b(u, v) - (u, V ) L 2 / Q ) ; 2) V is a subspace of H

1 (£2 ) and b(u, v) -

J L— a..(x) £ri%r- dx, (a,.(x)| being a positive definite 
2 i,j-1 1J d xi *xj l iJ J i,j-1 
matrix. 

2. A nonlinear heat equation 

As a first example we consider the nonlinear heat equation 

(2.D gf - 1 = -£- [kij(x, t. «) » £ ] • f(x. t. u) 

in £>X(0, T), 0 < T< <*> , 

with boundary and initial conditions 

u(x, t) - 0 on 9 2x(0, T), u(x, 0) - u°(x) in Q . 

Here Q c R N is a bounded domain with a Lipschitz boundary dR, 
x - (x., x N ) , {^.(x, t, u)} J j is a uniformly positive defi­
nite matrix and k.-.(x, t, u) and f(x, t, u) are supposed to be uni­
formly Lipschitz continuous functions of te[o, T.] and of uG(-o©,o©). 

If the exact solution is smooth enough then it holds 

(2.2) (u\ v ) Q • a(t, u; u, v) - (f(x, t, u) , v ) Q in [o, T] Y V 6 H 0 ( ; Q ) , 
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Here 

u' * 57' (u» v)0" J u v dx' 

a(t, w; u, v) - j EH kiiU, t, w) ̂ , - ^ dx, 
2 i,j«1 1J d xi "Xj 

H m(£) is the Sobolev space {ueL2(.$2); D*u£L 2(2) V W - m] with 

the usual scalar product (u, v) "^- (° u, D-tv)i2r/yi ai-d tne n o ™ 

l|u|lm - (u, u)J and H Q(2) « {u|u 8 H
1 ^ ) ; uloa-- o]. 

Let us consider a family of finite element spaces such that 
V c H (£2). The Galerkin method yields a semidiscrete solution 
U(x, t) which for each t€[o, T] is a function from Vh. U(x, t) is 
uniquely determined by a discrete analog of (2.2): 

(2.3) (IT, v) Q • a(t, U; U, v) - (f(x, t, U) , v) Q V v e Vh, 

U(x, 0) - U°(x); 

U°(*:) is a suitable approximation of u°(x) from V . (2.3) represents 
a system of ordinary differential equations. Applying the method 
(1.2) we obtain 

<fe*tun+J' v ) o t A t i h a ( V r un+j; un+j' v) " 
(2.4) k 

-At I Z | . i j ( f ( x , tn^, U
n ^ ) , v ) Q Y v 6 V h , 0 - n ^ - k. 

The scheme (2.4) being nonlinear has little practical value. We 
linearize it as follows: 

k k 
in*3_ v* + A t T — A . nft-. nfi- nn*J 

( 2 . 3 ) ^ ' V ) ° + A t í : 0 ^ a ( t n ' ü ; ü ' V ) " 

-Дt(£(x, t-. u n), • v>o Yч ЄV
Һ
, O . n . т 

дt 

for k - 1 

(2.6) 
f. / *

n
' 

<7. 

• ì/.t. - 1 

7' 

ün 

U n ш ' 

7 

. Є<7» 

u
n
 - 1 u" i-1 

(see ] Douglas and Dupont W), Џ 

k; 

. e - l . 

for k - 2 

( 2 Л )
 ^n "

 гn *• (
7

 + 0 ) Д t
'

 u П
 "

 (
7

 + o C
2

) u П
*

1
 *

 (
7 - ° Ч

) ü П 
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(see Zlamal 1.12.1). The order of accuracy q of the method (2.5) is 

equal 1 if k * 1 and Cf̂ -y and 2 if k s 1, c? - j or k - 2. Notice 

that whereas (2.4) with k - 1 and ^ = i is a one-step scheme the 

corresponding scheme (2.5) is a two-step scheme. 

Remark. Even when (2.5) represents a linear algebraic system at every 

time step it is not the final scheme in practical computations. In 

general, we have to consider finite element spaces V which are sub-

spaces of 1 J 0(2 n),C n / J? (best known example: curved isoparametric 

elements). In addition, we have to compute mass and stiffness 

matrices numerically. 

We assume that the family (v } has the following approximation 

property shared by finite element subspaces: to any 

u £ . . ^ ( . C ) ^ "1(C) there exists uh £ Vh such that 
0 ' 

Һц . Ł l l „ . ,.Һ„ < r l.P*1' ( 2 . 8 ) l!u - u h í o • h llu - uћ*', ï C І|P*VU p*Г 

Then i f the exact s o l u t i o n i s s u f f i c i e n t l y smooth the fo l lowing error 

bounds are t rue: 

(2.9) !ium - Um!» « C[EZ ?uJ - iPl • i r 1 + _*t«\ k - S n S T. 
° uj«0 ° *' a t 

(q is the order of (1.2)). For one-step methods (2.9) was proved by 

V.'heeler [ll], for two-step methods by ZlSmal [l2J by means of the 

energy inequality (1.4). 

The scheme (2.5) is linear, however one has to recompute the matrix 

arizing from the form a(w; u, v) at every time step. In recent years 

they have been proposed linear schemes which can be more effective. 

We refer to papers by Douglas, Dupont and Ewing [6] and by Bramble 

[l]. A different approach has been suggested by Crouzeix [2]. In fact, 

two special schemes of this kind were proposed much earlier by 

Douglas and Dupont [5]. 

The scheme (2.5) has been applied to the solution of the time 

dependent Navier-Stokes equations by Girauld and Raviart [7j. The 

error bounds have been derived again by means of the energy inequa­

lity (1.4). 

3. Nonlinear quasistationary magnetic field 

In recent years attention has been paid in electrical engineering 

journals to the computation of nonlinear quasistationary magnetic 

field. This problem occurs, e.g., in designing the magnet systems for 

fusion reactors and in rotating machinery. In two dimensions it can 

26 GreguS, Sujuaditt *
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be formulated in the following model way: There is given a two-
dimensional bounded domain Z2 and an open nonempty set R c Q , We are 
looking for a function u « u(x,, x2, t) (magnetic vector potential) 
such that 
D 

C»t ^X .j VX.J wx 2 w,x2 

(3.2) u(xlf x2, 0) « uQ(xlf x2) in R, 

2) 
(3.3) 0 -.j^- C j ^ ) + JT" t^ST1) + J inSx(0, TJ.S-fi-R, 

3) u satisfies a boundary condition on <>Q, 
4) u satisfies the conditions 

(3.4) [ U ] R - 1 ^ ^ ] R B 0 o n T - x c R A c S . 

Here the conductivity G* « G"(x.j, x2) is a positive function on R, 
the reluctivity v - >> (x., x2,H <yioa. u||) f li -Vcodlull

2 « 

(r^) + (~--) , is a positive function on Q x L o f 0») , 
ux- ux2 

J « J ( x . j , x2, t) is a given current density,
 u

0(x-j, x?) *
s a gi v e n 

function defined on R and n is the normal oriented in a unique way. 
The problems 1) - 4) can be easily formulated in a variational 

form. Let us, for simplicity, consider the Dirichlet boundary 
condition 

u « 0 on JQ. 

We multiply (3.1) and (3.3) by a function v € H (Q) , we integrate, 
we use Green's formula and (3.3) and we sum. The result is 

(3.5) (CT^, v) 2 • a(u, v) « (Jf v) 2 Vv € \\U&) 
0,1 LZ(R) LZ(Q) ° 

where 

*(u, v) « f II j^H iSdx. 
^ i«1 " xi w Xi 

(3.5) is taken in Melkes » Zlamal [9 J as the starting point for the 
construction of the approximate solution. Here, we briefly mention 
some results of Zlamal [14]• 

There are given two abstract equivalent formulations of the 
problem. One of them is a generalization of (3.5). Without all details, 

we are looking for a function u € WR « fu|u 6 L
p(0, T; V ) ; 

u£ £ Lp,(0, T; VJ»)] statisfying 
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(3.6) j | (uR, vR) • a(u, v) « <f, v> in Iv» ((O, T)) V v € V, 

u(0)R - u
u. 

Here V is a separable reflexive Banach space, up is, roughly spea­

king, the restriction of u to R, VR «[u*|u« vR, v 5 v}, a(u, v) is a 

hemicontinuous monotone form on VxV (linear in v and, in general, 

nonlinear in u) such that 

a(u, u) * «lul£, |a(v, v)| - Clull̂ "1 iiv!!y fu, v 6 V, 

(*i, z) R is a scalar product of a Hilbert space HR in which VR is 

dense and continuously imbedded, l c pia» , i * 4 - 1 and <f, v> 

is the value of a functional from Lp (0, T; V 1 ) . The fully discrete 

approximate solution Un 6 V (n « 1,2,...) is defined in two ways: 

(Un+1 - Un, v R ) R *At a(U
n +\ v) -

or 

-Ût <f n + 1, v> Уv 6 V
h
, u£ - u°, 

(7 UR ' 2 UR 7 UR» VR}R Л t a ( U
 '

 v ) 

E
П
"-t

_ 1
 j 

n
*

2

 v
s w -.. * «h „-1 _ „o „ ..o 

t„ 

- At < f
n
*\ v> У v ê VП

, U"
1
 - u£ - u( 

n 
with fn -At"1 j f(r)dt. Evidently, there are used the first and 

n-
the third scheme of (1.3) for time discretization. In both cases, the 

solutions (which uniquely exist) are extended to (0, T}as step 

functions: 

U*- Un in (tn.1§ t j , n - 1,2,..., S « (h,4t). 

It is proved that the problem (3.6) has a unique solution and that 

U ^ — # u in Lp(0, T; V) weakly if S —#0, 

In the special case (3.5) all assumptions are fulfilled (p * 2) if 

^(x . j , x 2,^) possesses Caratheodory's property, is bounded from above 

and 

^(x-, x 2,|) -^(x-, x^tj) - -cC%- *J) V%« *Z
J 0, 

<*« const > 0. 

It is also proved that if the exact solution is enough smooth in R 

and in S and the elements of Vh are piecewise linear functions then 

l,u " °'lL2(OiT;H
1te)) " Cf h * ^ > q ' M -
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4. A dnnped nonlinear wave equation 

Let \ a . j . j (*);': .s.-i he a uniformly positive definite matrix. Let 

d(x, t, u, z) and g(x, t, u, z) be piecewise continuous with respect 

to x and uniformly Lipschitz continuous with respect to t, u and z 

for (x, t) £ C X •"(), f\ and u, z S (-«*>,-*>). Further, we assume 

d(x, t, u, z) - 0. 

V.'e consider the equation 

(4.1) - ^ • d(x, t, u, u') i H - Lu • g(x, t, u, u') in £ 
«>t ** 

where 

Lii- E = ^ ^ . . ( x ) ^ ] , u . . * , 
i,j-1 * x i 1J ^ x j "* 

with the boundary and initial conditions 

(4.2) u - 0 on ciTix (0, T), u(x, 0) - u°(x), u»(x, 0) - z°(x) inQ, 

u°, z° € IlJ(C). 

We write the problems (4.1), (4.2) in a variational form; we set 

(4.3) u' « z 

so that z1 • -d(x, t, u, z)z • Lu • g(x, t, u, z ) . If the exact 

solution is smooth enough then it follows 

(4.4) (z1, v) Q - -(d(x, t, u, z)z, v ) Q - a(u, v) + (g(x, t, u, z), v) 0 

Vv 6 HQ(2) 
where 

a(u, v) - f i ai1(x) ^ H ±L d x. 
j[ i,j-1 « *xi "xj 

The equations (4.3), (4.4) serve as the starting point for the con­

struction of a fully descrete approximate solution. 

First, we define a semidiscrete solution* As before let (V j, 

0 < h <£ h*, be a family of finite dimensional subspaces of i-0(£) 

possessing the approximation property (2.8). By a semidiscrete Galer-

kin solution we mean a couple of functions U(x, t), Z(x, t) 6 V 

Yts[o, T] satisfying in (0, T) 

U' - Z, (Z», v ) Q - -(d(x, t, U, Z)Z, v) Q - a(U, v) • 

. » » . •>>, » J 0 » » • " h * " - m - , , 0 / 

- -°{x). 

• (g(x, t, U, Z), v ) 0 Уv І V
ћ
, U(x, 0) - U°(x), Z(x, 0) -
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Here U°, Z° € V are suitable approximations of u \ z°. The discrete 

zation in time is carried out by the scheme (1.2) and by the lineari­

zation procedure introduced in section 2 as follows: 

j - 0 -
Д t 

k 

— Һ zn*K k 
(2Z.Ч4 
j -0 J 

zn*J 
• v > o " 

ñ k 

• - л t ( d n EZ 
j -0 

s-. 
П 

zn*K v > o 

- л t a ( å ^ j U n * J . v) • Д t ( ß ' ̂ ) 0 
Yv Є V Һ ; 

here 

d(x, t-,ll
n
, Z

n
), g

n •- g(x, ts, U \ Zn) 

and t-, Un, and in the same way Zn, are given by (2.6), (2.7), 
n' n+k „n+k It is easy to prove that to find un , Z means to solve a sy­

stem of linear equations with a positive definite matrix. Hence Un, 
n «£ £ T 

Z (k • n • -jr) are uniquely defined. 

The energy inequality (1.4) (used twice with b(u, v) • (u, v) as 

well as with b(u, v) • a(u, v)) can be again successfully applied for 

deriving error estimates. V'e state the result for the case of 3-method 

with y <i which is of order one (q • 1). resides tie hypotheses 

introduced above and besides some regularity conditions which we do 

not introduce we assume that U° is the Ritz projection of u \ i.e. 

a(U°, v) - a(u\ v) Vv SV h, and that liZ° - z0l»0 - C h
p+1 (e.g., we 

can take the interpolate of z° in Vh for Z°). Then (see Zlamal [13]) 

« um - UmHo * C(h
p*1 • At), 

!lu'm - ZmyQ i C(hp*1 • At) , 1 i m * At"1 T, 

|| um - Umll1 * C(h
p * A t ) . 
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