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STRONGLY MAXIMAL MATRIX FUNCTIONS 

IN REGIONS CONTAINING STABLE SOLUTIONS 

Ivo Vrkoc 

Prague , CSSR 

Ito stochastic equations 

(1) dx = a(t,;;)dt + B(t,;;)dw 

are considered where w(t) is an n-dimensional Wiener process, 

a(t,x) is an n-dimensional vector function, B(t,x) is an n»n 

matrix function. 

Hypothesis (A). B..(t,x), a±(t,x) are defined for t-^O, x€R n . 

are bounded, Lipschitz continuous in x and Holder continuous in t. 

Let D be a given bounded region and K a compact subset of D . 

Hypothesis (B). The matrix function H(t,x) * B(t,x)B (t,x) is uni­

formly positive definite on (0,co )xS for every compact subset S 

of D-K . 

Define P(B,xQ) =- P { 3 t :x( t ;0,x Q)^ D } , where x(t;t0,xQ) is the so­

lution of (1), x(t ;t ,x0) - xQ . We write HQ(t ,x)£ H(t ,x) (the 

diffusion generated by H is greater than that generated by H ) 

iff H (t,x)-H(t,x) is positive semidefinite at every point of 

<0,oo)*D . 

Definition (of stability). A compact set K is uniformly stable 

with respect to (1) iff for every neighbourhood U of K and every 

number €>0 there exists a neighbourhood Ue of K such that 

P{3t:x(t;t0,x0)£u, t-StJ-Se, for x0G Ufe . 

Definition (of maximality). Let a(t,x), B (t,x), a bounded region 

D and a subset K be given fulfilling Hypotheses (A), (B). We say 

that the matrix function 3 (t,x) is strongly maximal (with respect 

to a(t,x),D,K) if P(Bo,xo)£ P(B,xQ) for every initial value 

x €: 0 and for every matrix function B(t,x) fulfilling Hypotheses 

(A), (B) and B(t,x)£ BQ(t,x). 

Motivation of the problem. Let a technical device be described by 

x « a(t,x). The influence of random perturbations on such a system 

can be sometimes described by (1), where B(t,x) determines the in­

tensity and distribution of the random perturbations. Frequently 

the probability that the parameter x leaves the region D is re­

quired to be small. If a(t,x) and B(t,x) are given precisely 

then this probability P(B,x ) can be calculated. But often only 

an upper bound BQ(t,x) for B(t,x) (B(t,x)-£ BQ(t,x)) is avail­

able. Certainly BQ is a good upper bound only if P(B,x )£ 

-£p(Bo,xo) , i.e. if BQ is strongly maximal. 

A similar problem was studied in [f| - [i] but in these papers 
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the probability P(B,x0) was considered on a finite time interval. 

Before the results can be formulated, further assumptions are 

to be imposed on D and K . 

Hypothesis (C). The region D is bounded and is of the type C ', i.e 

for every point x^°'GD (boundary of D) there exist a neighbour­

hood U of x^0), an index i and a function x. = h(x±,...x. «, 

xi+1,...xn) having the third continuous derivatives so that 

DOu - { X : X ± > h(x1,...xi(-1,xjL+1....,x ) O U } . If n=l then Hypothe­

sis (C) is fulfilled for bounded intervals. 

Hypothesis ( C ) . The set K is compact, can be expressed as K=lJ 

where U is a region, the boundary U consists of one component 

only and U fulfils Hypothesis (C). 

Hypothesis ( C ' ) , The compact set K is a union of a finite number 

of disjoint sets K± fulfilling Hypothesis ( C ) . 

Lemma. Let R be a symmetric matrix. There exist symmetric positive 

definite matrices R^1^ i=l,2 , such that R = R^ 1)- R^2) . The 

matrices R*1' are determined uniquely provided they have the same 

eigenvectors as R . 

Further notation. Denote r(x) = dist (x,K) for xGD-K . 

With regard to (C ) there exist Q2r/Cdxflx.) (x) for xGK . We 

denote R(x) • { / ? 2 r / 0x j px.} for xGK . Let v(x). be the unit 

vector of the outward normal with respect to D-K . 

Problem (P). Find a bounded solution u(t,x) of 

Lu = ^u/0t +Ziai(t:.x)0u/?xi + \ Z ± ^ (H
0)ij(

t ,*y22u/2x i9x..=0 

in the region (0,oo)*(D-K) , 
fulfilling 

u(t,x) = 1 for x€D, t-*0, 

uft'Y)-*° f°r y—*K uniformly with respect to t . 

We shall consider the Ito equation 

(2) dx = a(t,x)dt + BQ(t,x)dw . 

Theorem 1. Let the coefficients a(t,x), BQ(t,x) fulfil Hypotheses 

(A), (B), let the region D fulfil Hypotheses (C) and let the com­

pact set K, KCD, be a union of two disjoint sets K±, K2 such 

that 

1) H±.(t,x) s 0 for t-*0, x€K± (if K± is nonempty), 

2) K-fulfils Hypothesis ( C ) and 

2^iai(t,x)Vi(x) - I Z i j(Ho)ij(t,x)R(
2)(x)-^0 for t* 0 , 

x € K 2 (if K2' is nonempty), 

3) K is uniformly stable with respect to (2), 

4) every point of D-K can be connected with D by a continuous 

curve lying in D-K . 
Then BQ(t,xJ is strongly maximal if and only if the solution u 
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of the problem (P) ie a convex function of x in (0,co)x(D-K) . 

The theorem gives conditions for the matrix function B (t,x) 

to be strongly maximal. Notice that BQ(t,x) need not be strongly 

maximal even if it is a constant matrix and even in the scalar case 

(see [l] ,[2] ). The method of the proof usee modified results of [4) , 

[5) on attainable and nonattainable sets and on degenerate partial 

differential equations of parabolic type. 

Theorem 1 yields that a necessary condition for B
0(t,x) to be 

strongly maximal is that the set K is convex. Using this fact as 

an assumption we obtain 

Theorem 2. Let the coefficients a(t,x), BQ(t,x) fulfil Hypotheses 

(A), (B), let the region D fulfil Hypothesi3 (C) and let the com­

pact set K be convex. Assume that K is uniformly stable with re­

spect to (2) and that at least one of the following assumptions is 

fulfilled: 

1) H(t,x) » 0 for t-fcO, x€K 

2) K fulfile (C) . 

Then the statement of Theorem 1 is valid. 

Scalar case (n»l) . In this case D • (x1,x2) . We shall assume 

(without loss of generality) that K • {x-j . In this case we obtain 

more explicit results. 

Theorem 3. Let function9 a(t,x), B(t,x) fulfil Hypotheses (A), 

(B). Assume that a(t,x1) • B(t,x1) • 0 and that the solution 

x(t) • x1 is uniformly stable with respect to (1). Let the func­

tion a(t,x) be a convex function of x in (0,oo)xD . The func­

tion B (t,x) ia strongly maximal if and only if a(t,x2)--»0 . 

Theorem 3 can be derived from Theorem 2 and it is a starting 

point for deriving theorems involving no assumption on convexity 

of a(t,x) . Let f'(x) be the derivative of f with respect to 

x . 

Theorem 4. Let a(t,x), B(t,x) fulfil Hypotheses (A), (B), D«(0,1), 

a(t,0) * B(t,0) « 0 , let x(t) « 0 of (1) be uniformly stable, a' 
1 2 

and 3" continuous, a(t,l)<0 ; Denote g • sup -̂ B (t,l)/(-a(t,1)). 

Assume there exists a number m-fcg euch that 

(a'(t,x) + B'(t,x) + B(t,x)B" (t,x))32 + 

+ (2a(t,x) + 5B(t,x)B'(t,x))s + 6B2(t,x) + a" (t,x)e3-*0 

for all t«*0, xG(0,l), s£(m,m+2) . 

Then the function B(t,x) is strongly maximal. 

A very simple condition for strong maximality can be given in 

the autonomous scalar case, i.e. when n«l and a(t,x), B(t,x) 

do not depend on t . 
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Theorem 5. Let a(x), B(x) be real, Lipschitz continuous func­

tions. 0 - (0,1), a(0) • B(0) « 0, B(x) / 0 for x£(0,l> . If 

the solution x(t) « 0 is stable with respect to (1) then B(x) 

is strongly maximal if and only if a(x)---0 for x€(0,l) . 

Notice that the condition a^O is neither necessary nor suf­

ficient in the nonautonomous case. The condition of uniform stabili­

ty of K can be given in terms of Lyapunov functions. 
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