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BOUNDS FOR EIGENVALUES OF DIFFERENTTIAL EQUATIONS

Waldemar Velte
Wiirzburg , BRD

A method due to B. KNAUER for obtaining lower bounds to eigenvalues
of symmetric and positive differential operators L with discrete
spectrum is extended to a class of eigenvalue problems of the more
general type Lu= A Mu involving symmetric and positive ordinary or
rartial differential operators. Examples are given and numerical
results are presented.

1. INTRODUCTION

In a real Hilbert space E,(, ),ll | we consider eigenvalue problems
Lu= A Mu, u€ D(L)c D(M) CE under the following assumptions:
i) L and M are symmetric and positive respectively in D(L) and D(M).
ii) There exists a sequence of eigenvalues O< ),‘ ‘\.‘.S eos 9
A, ~® as n ~m ; the corresponding (orthogonalized) eigenfunc-
tions Pir P eee form a total system in E.
As is well known, upper bounds to eigenvalues are obtained by the
method of Rayleigh-Ritz: For any n - dimensional subspace UnC D(L)
the corresponding Ritz eigenvalues l\1 € eee € An satisfy the ine
equalities XkS‘Ak for k=1, ... , n .

Several authors have shown how lower bounds to eigenvalues can be
obtained in terms of the Ritz eigenvalues Ak s provided that some
additional information is available. (See, for instance, [4)-[5],
[10] . ) For problems Lu= A u, B. KNAUER [4] proposed a method
which is particularly simple from the numerical point of view. It
is numerically stable as was pointed out by LOBEL [7] . Numerical
results are found in [4] and [8].

In this lecture, we consider two different extensions of KNAUER's
method which apply to problems Lu= A Mu . Numerical examples show
that these procedures can yield - at least in particular cases -
fairly good bounds in comparision with more sophisticated but also
more laboreous methods as, for instance, A, WEINSTEIN's method of
intermediate problems or G. FICHERA's method of orthogonal invariants
(see [2),[3), [11] and the references given there) .
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2, EIGENVALUE PROBLEMS Lu=AMu
Let U C D(L) be given. Firstly, one has to solve the problem

uGUn:(Ln-AHu.v)-O Vv&Un.

We need the Ritz eigenvalues A“ ""An as well as a system of Ritz
eigenfunctions Ugpeceru, orthonormalized with respect to the inner
product (u.v)M- (Mu, v). In addition, we need reasonably good positive
bounds C et and ’nu satisfying

a1 <inf (Lv,w) / (Mw, v) , Bnyq =inf (Mw,w) / (w, w)
w w
where w € D(L)evn (orthogonality with respect to (, v )
Now, for k=1,...,n, we consider matrices of the following type:
/
/ A A x
I A U Tkel

0 . . S
_ A!l rn
Ty Tiet * * * T I LI

THEOREM 1, Let v, denote the lowest eigenvalue of (1) where
=Ly - AgMu | /B o A= (Luy o M) / (Mo My, )
Then the following inequalities holds
VeEA €A, for k=1,...on .
Proof: See [8].

Example 1. (Buckling of a uniform beam , a20 )
wVeal(1=x)u'I==2u", u(0) =u"(0) =u'(1) =un(1)=o0,
Using the subspace Un spaned by first n= 10 eigenfunctions of
uiv- -Au”" (\mder the same boundary conditions) we obtained with
e y=Byy=(21m/ 2)2 the following bounds (for details see [9]):

a-:o a = 100

k Vi Ay = Yk Ay

1 1.13060 31.13062 1 50.30137 50.30141
2 ;2.03702 52,0074 2 84,89723 84.89750
3 88.10059 88,10073 3 117.2274 117.2281
4 146.5671 146.5674 4 173.2422 173.2431
5 225.2525 225.2528 5 251.2003 251.2012
6 323.8163  323.8168 6 349.4366 349.3860
7 ky2,1765 4h2.1772 7 467.6156 467.6185
8 580.3039 580.3075 8 605.6299 605.6455
9 738.1839  738.1904 9 763.4267 763.4633
10 915.7321 916.3402 10 940.2857 943.1005
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3. PROBLEMS IN VARTATIONAL FORM
Let the eigenvalue problem now be given in variational form
u€D : a(u,p) = Ab(u,o) vV o€ED, (2)
where a(, ) and b(, ) are symmetric and positive bilinear forms
defined in D, and D, respectively ( D,cD CE ) . Let U, €D, be
given. Then the Ritz eigenvalue problem can be written in the form
u€yu : a(u,9) = Ab(u,p) Vo€U, .
Let 1\1 € o0 sAn denote the Ritz eigenvalues and Uy oeee ,un corre=
sponding Ritz eigepﬁm‘ctions, orthonormalized with respect to the
inner product b(, ) and the related norm || “b . Suppose we know a

reasonable good positive bound « ’

n+1
L a(w, w)/b(w, w) VwED QU

(orthogonality with respect to b(, ) ). Suppose further that for
each u, we know a function Vic € Db satisfying

a(u , ) = (v, o) Vo€D, . (3)
THEOREM 2., Let vk denote the lowest eigenvalue of (1) where
e=llvies Ay
Then the following inequalities hold:
vkskksAk for k=1, ... ,n .
Proof: See [8] .

Example 2. (Buckling of a uniform beam. See also [1, p.4O4] )
wlv . (xut)' = Au"
u(0)=u'(0)=u"(1)=0 , ~u(1)+ u'(1) =2rur(1) . (%)
Here, the eigenparameter A appears in one of the boundary conditions.
The variational formulation (2) is given by

1 1
u€D, i _‘];(u"v"-vxu'w')dx- K£u'a'dx VoED,

vhere we may choose: D, = { 02[0 s 11 | u(0)=u'(0)=0 ) and
D, = { 01[0, 1]] u(0)=0} . Now, when u, v is a pair of functions
satisfying (3) it follows immediately that u*V - (xu')'= = v"
in [0, 1] and u"(1)=0 , -u™(1) +u'(1) = v*(1) , provided u is in
C’[0, 1]. Suppose that the Ritz eigenfunctions are in C' [0, 1] and
satisfy u.l';(l) =0 . Now we define v, by

Vi = swt e xouy R vk(o)-o
so that the pairs w_, v, satisfy (3) . Using the subspace U,
spaned by the first two eigenfunctions of ulV = aAu" together with
the(modified)conditions (4), we obtained with 1" (5ﬂ/2)2 the
bounds
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3.1679251,53.1679&5 N 22.7301<1,22.7313 .

These bounds are in agreement with those obtained by BAZLEY et al.
[1, p. 405] using the first n= 12 eigenfunctions for the Ritz
bounds and constructing intermediate problems for getting lower
bounds:

3.1679351143.167932 ’ 22.73018‘12522.73018 .
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