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ON THE TRANSFER OF CONDITIONS AS APPLIED TO SOLVING
TWO-DIMENSIONAL BOUNDARY VALUE PROBLEMS

Jit*{ Taufer
Praha, ESSR

The topic of this lecture was stimulated from two sources:

The first one is an attempt to generalize the method of trans=-
fer of conditions from the one-dimensional to the two-dimensional
case. The one-dimensional case was studied in [1].

The second source is the S.L. Sobolev’s' 01d idea of the closure
of numerical processes, see [2].

Let us investigate the usual elimination method from this se-
cond point of view in order to show the connection of the transfer
of conditions with the direct methods for the solution of alge~
braic systems arising from boundary value problems.

Let us consider the Dirichlet problem for the Poisson equation
Au = £ on the rectangle <0,a> x <0,b > and suppose that
we solve it by the finite-difference method. For simplicity let
us assume that the boundary conditions are of the form:

-t -

u(0,y) =u(a,y) =0 for O®ya&b
u(x,0) = p(x) and u(x,b) = q(x) for O % x& b,

Let us assume that § is a rational number and that our alge=~
braic system is the result of using the well-known five-point
scheme.

We find:
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and the vectors u_ and f, have n - 1 components:
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shere wu. are the approximate values of the solution u( jh,kh)
P | ka = f(jh,kh).

The square matrix A of order n - 1 io of the form:

-4, 1,0, --- 1
1,-4,1,0 ...

...... 1,4 &

The vectors Uy and u, are given by the boundary conditions,
Now, let us spply the block elimination method to the system
(1). We obtain:

- - -

A, I,0,0,.. uy = [ n2f, ~u, ]
0,N3,N,, O, ... u, N h2e ~n2e) +ug
(2) | 0, O,N,,N,, uy N3h2t3-ll2hzf2+h2f1-uo
: s s
| o || ea ’ ;

where Nk*l = AN, - Nk-l and “1 = I, "2 = A,
Let us consider the k-th row of the system (2):
k
2 k=4 k
‘3) Nk*luk + Nkuk+1 = h 12'1 “ifi(-l) + (’1) “0

and let us examine what will happen when we pass with the para-
meter h to sero in such a way that Lk.h = constant, It is clear
that the dimensions of the matrices N, and the vectors u, tend
to infinity in the course of this passage to the limit. The ques-
tion arises whether the system (3) will be converted into an ine
tegral equation of the form:

a a
(4) ] Dy(s,x,y)ulx,y) ax + f D.‘,(a,x,y)ny(x.y) ax = a(s,y)

(o] 0
for 0 <8 <a, where k.h =y,
This idea comes from the following consideration: If the deriva-
tive uy in (4) is replaced by any finite difference, if the in-
tegrals are replaced by arbitrary quadrature formulae, and if we
require that the equation obtained in this manner be satisfied at
the collocation points s; = ih, i = 1,sesyn=1, than we come
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to- an algebraic system of the form (3).

Our question can be formulated as follows: are there such func-
tions Dy(s,x,y), D,(s,x,y) and d(s,y) that the system (3) is
a difference analog of the integral equation (4)7 The answer is
negative. However, there exist such funetions that the difference
analog of the integral equation {4) is algebraically equivalent
with the system (3). There exist such regular matrices R, that
the system

K
) B [Meuemeg ] -5 [ iz.l 1ue o (0¥ ]

tends in the above sense to the equation (4). One may expect that
neither the functions Dl(a.x.y), Dz(a.x.y) snd d4(s,y) nor the
regular matrices R, are given uniquely.

Now, let us given such a variant of the choice of R, that the
functions Dl(s.x,y) and Dz(a,x.y) can be expressed in terms of
elementary functions.

Theorem 1, There exist regular matrices R, such that the
system (5) passes to the following integrsl equation:

a
(6) Juts,y) -3 [ & (L2yys,mulx,y) ax +
0

a .
+ I [L(zy,c,x) - L(O,s,x)] u,(x.y) dx =

o

a
= 2 73?-6[ L(y,s,x)p(x) ax +

«

a
{f [ L(:*y..,x)-x.(y-s,s,x)] £(x,2) ax} az,
0

+

OW

where

2z

(0]

y

1-20" cos ( f (o*x))n.

a
L(y,s,x) = T‘:F log( =~ )
a

y

[1-]

y

1-2e- cos ( f (a-x))ﬂ-

An izmediate consequence of this theorem is the following
Theores 2. Every solution u of the Poisson equation Au =
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= £ on the rectangle <O0,a> x <0,y> with the three cenda~
tions

(N

{ u(0,z) = u(a,z) =0 for O<s<y
and u(x,0) = p(x) for 0<x<a

satisfies the integral equation (6) for 0 <s < a.

This Theorem 2 can be also proved directly, without using the
finite-difference method. The above way of establishing Theorem 2
is due te the attempt to show that numerical methods, which arise
from the integral equation (6) or (4), are either identical with
or similar to direct methods for the solution of algebraie systems
arising from the numerical solutien of boundary value problems.

The integral equation (6) can be treated in a different way.
This possibility is given by Theorem 2. We seek such functions
D,(s,x,y), Dy(s,x,y) and d(s,y) that for avery function u
which satisfies the Poisson equation on the rectangle <0,a> x
x <0,y > and the three boundary conditions (7), the identity
(4) holds. We say that (4) is the transferred condition of the
conditions (7). The {(4) means the transferred condition from the
part of the boundary onto the line segment [(0,1):(..;7)] o Ana-
logously, we can define the transferred condition of a condition
given on an arbitrary part of the boundary onto an arbitrary cur-
ve, In the diserete case, finding the functions D,(s,x,3),
Dy(s,x,y) and da(s,y) ie the forward sweep of the block elimina-
tion method. We say that this finding represents the forward sweep
also in the continuous case. We treat the equation (4) as an eve-
lution problem for the unknown u(x,y), where the initial eondi-
tion is given on the line segment determined by y = b : u(x,») =
= g(x), and find ‘the solution of this preblem. In the discrete case
it is the backward sweep of the elimination methed.

Hence, we have constructed the continucus analog of direct
methods for the solution of algebraic systems, arising from the
Poisson problem on a rectangle. There is a large number of ef~
ficient methods for this problem and my aim was not to study this
simple preblem but to investigate various applications of the
idea of transferring the conditions. In my opinion, the idea of
the transfer of conditions can play an important role in the fol-
lowing fields:

1. The study of the existing direct methods for the sclution of
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algebraic systems arising from boundary value problems and the
determination of the strategy for numbering the mesh points.

2. The development of new direct methods.

3. The simplification of boundary value problems, especially by
the modification of the domains.

4. The application of the existing routines developed for special
regions to more general problems.

In the lecture a few examples were shown to illustrate this
application.
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