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INTEGRAL AND ASY:iPTOTIC EQUIVALENC: OF TWO SYSTE.S
OF DIFFEREETIAL EQUATIONS

Marko Svec
Bratislave,Czechoslovakia

The problem of approximation of solutions of a given differen-
tial equation with aid of solutions of another differential equa-
tion is not a new one;it is very important in the theory of diffe-
rential equations as well as in the applications.It has already
been investigated in great detail.These investigations gave birth
to method of variation of constants,method of asymptotic integra-
tion,etc.The mentioned problem is also closely releted to the no-
tion of asymptotic equivalence and integral equivalence of two sys-—
tems of differential equations.The problem of asymptotic equivalen-
ce was investigated by several authors,e.g. H.Weyl,N.Levinson,A.
Wintner,V.A.JakuboviE,F.Bauer,J.S.Wong.R.Conti,M.éveq,N.Onuchic,P.
Talpalaru,T.G.Hellem,T.Yoshizava,J.Kato,etc.

In this lecture we shall deal mainly with integral equivalence
and with the relation between integral and asymptotic equivalence.
Several of the results concerning integral equivelence presented
here were obtained in cooperation with A.HaZddk [11.

First,let's define basic notions required in the following:

Let be given two systems of differential equations

(a) x"=F(t,x), (b) y'= G(t,y)
where x,y,F,G are n-vectors , t ¥ O.Suppose that F and G are such
that the existence of solutions of (a) and (b) on the interval
Ctys o) vt ¥ 0, is guaranted.Let futher ¥v(t) be a positive conti-
nuous function on tto.uo).

Definition 1, We shall say that a vector function z(t), t = tos
is = bounded,if there exists & constant M>O0 such that

(1) W)z S H, & F b
where [ .| denotes a suitable vector (matrix) norm.

Remark 1, Under a solution of a differential equation we shall
understand a solution existing on some infinite interval Cto,oo).
The integral will be the Lebesgue integral.

Definition 2, We shall say that the systems (a) and (b) are
~~ asymptotically equivalent if for every solution x(t) of (a)
there 1s a solution y(t) of (b) such that

(2) I+ () [x(t) - y(t)1l 088 t »
and conversely,for each solution y(t) of (b) there is a solution
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x(t) of (a) such that (2) holds.

Definition 3. We shall say that systems (a) and (b) are (- ,p)-
integrally equivalent, p>0, if to every solution x(t) of (a) there
is a solution y(t) of (b) such that

3) A7) = y(8). ¢ L (Ltg,))
and conversely,to each solution y(t) of (b) there is a solution
x(t) of (a) such that (3) holds.

Here L (Lto,w)) denotes the space of all vector functions z(t)
mesurable and defined e.e. on it , - ) such that 12(t) P is Lebes-
gue integrable on [to,.o).

We start our considerations with special systems,i.e.

(4) x'= A(t)x + £(t),

(5) y'=A(t)y.
From the relation that x(t) = y(t) + xo(t),where xo(t) is a solu-
tion of (4) we have immediately

Theorem 1. The systems (4) and (5) are (v ,p)-integrally equi-
valent 1ff there is a solution x (t) of (4) such that "r-l(t)xo(t)
belongs to Lp([to.w)).

We see that in this case the problem of (+ ,p)-integral equiva-
lence turns into the problem of existence of solution X, (t) of (4)
such that ~+1(t)x,(t) € L (ity, ).

We will discuss this problem in the case that A(t) = A is a con
stant matrix.Suppose that A has the Jorden canonical form.Let be
My < Mo eee< A =\ distinct real parts of eigenvalues A.i(A)
of A and let be m; the maximum order of those blocks in A which
correspond to eigenvalues with real part (ai.Denote m, = m.Let
be a real number.Then let £ = m, if 4, =A andf= 1 if no A,
equals AL .Suppose that A = diag(Al,Az), where A; and A, are square
matrices such that Re J\i(A1)</u »Re .\i(Az) Z A for all i.Then
Y(t) = diag (exp tAy,exp tA2) is the fundamental matrix of (5) with
Y(0) = I (identity matrix ) and

Yl(t) = diag (exp tAl,O) , Yz(t) = diag (0,exp tAz)
and such that
(6) Y(t) = Y, (8) + Y (t) , Y(H)YH(a) = ¥y (1)¥TH(8)4¥, (£)¥5 1 (8),

¥, (6)¥7(s) = ¥(t-8),1 = 1,2
and there exist numbers c> o, cy> 0 such that
7) 1Y, ($) = ¢y exp m=8) »}’m,{t),
) =1Yp (=01 € oy exp (=48) Yp(t), ¢ 20
where =8 = max[Re /\i(Al) -Mi<0, m's m if M.,-M= -8 and

330



k-1
% t 2z,
X () 8{1 : ERER!

We are now able to6 represent the solution x(t) of (4)in the form
-

t
(8) x(t) = Y,(t)x, + gy (t-s)f(s)ds - SY (t-s)f(s)ds

A ny

using the formula of va.riation of constunts the aqsumg.tion that
£(t) is such that | ‘Y (8)f(s)dsl<a and putting x --‘Y (t-s)f(s)ds.
)

Taking A= 0 we have the majorants of the three terms on the right
in (8):

|Yl(t)x |2x1e

t
, |$ Y, (t-s s)f(s)ds]S ¢ S e-:(t-a)lf(s)l ds,
li! (t-s)f(s)ds|2 c, { *l(t-s)lf(s)l ds .
Thus we have to gua.rantee that
s e 39 2(a)as e 1, (L0, ), s Ypt-2)12(a)1ds € T, ([0, 00)).
The following lemmas will be useful ( see [1]):

Lemma 1, Let @ be a positive constant and let be g(t) £ 0
g(t) € L,(10,)).Then

e~ T(t-8)(5)as ¢ L,(10,8)) for ell p Z 1.

(TN 4

Lemma 2. Let be ;slf(sndu» .Then !lf(s)|ds ¢ L,(10, )
for all p £ 1. °

Application of these lemmas on (8) gives

Theorem 2, Let A be a constant square matrix.Let f(t) be conti-
nuous on [0,%) and let .-
9) gt I1f(t)] dt <oo .

Then systems (4) and (5) are (1,p)-integrally equivalent, p Z 1.
We note that in the paper [2] Theorem 2 swe had the condition
(10) g Tl e)at <o

as suffictent for the asymptotic equivalence of (4) and (5).It
seems that the integral equivalence implies the asymptotic equiva-
lence.We shall see later that this is not true in general.
The motivation which we explained to get Theorem 2 gives us

some ideas how to proceed by establishing the (~p,p)-integral equi~
valence between

(11) x = A(t)x + £(t,x),

12) ¥y = A(t)y.
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There are three things to be used: formula of variation of con-
atants,decomposition of fundamental matrix Y(t) of (12) into two
matrices Yl(t) and Yz(t) exhibiting similar properties as (6) and
(7),estimation and growth of f(t,x).The last will be facilitated
if we know the apriori estimation of the solutions of (11) and (12).

Using supplementary projections Pl and P2 we get that,if y(t)
is a solution of (12),for the solution x(t) of (11) the integral
equation

(13) x(t)=y(t)+ SY(t)PlY l(s)f(s,x(s))ds- S‘[(t)PaY 1(s)f(s,x(s))ds
holds.To prove that ~1(t)[x(t)=y(t)] e L (Lt,,)),1t suffices to

prove that the second and third terms on the right in (13) multi- -
plied by "F'l(t) belong to Lp([to,on)).To this aim serve Lemma 2

and
Lemma 3.({11) Let ~-(t) and yw(t) be positive functions for-t Z 0
Y(t) be a nonsingular matrix and P a projection.Let further be

(14) zlﬂrl(t)Y(t)PY-l(s) p()Pas & Kfor tZ0, p>0
and
fexo 2 |

(15) gexp{ kP a¥PP(s) ~+7P(s)as}at <o .

Then :

(16) lim | ¥ 1(£)Y(t)Pl= 0 as t »oo
and

) 1 1(t)Y(t)P] € T o ([0, ®)).

Using Schauder’s fixed=-point theorem,Lemma 2 and Lemma 3 we can
prove

Theorem 3.(C1]) Let Y(t) be a fundamental matrix of (12) and
let A(t) and W(t) be positive continuous functions for t Eo.
Suppose that :

a) there exist supplementary projections Pl,P2 and constants
K>O and 2 € = p<e such that

SI"F]'(*;)Y(t)PlY 1(s) ?(s)lp ds + Ild» 1(t)Y(t)P2 Y 1(s) ¢ (8))P as

o

2 kP for t Z0;

b) there exists g:[0,00)x[0,%) -» [0, ) such that
(1) g(t,u) is nondecreasing in u for each fixed t ¢ [0, %) and in-
tegrable on compact subsets of [0,0) for fixed u €¢[0,00);

(11) ]sgp'(s,c)ds <eo for any constent ¢ & 0 ,where % + o= 1;

(111) gor each x ¢R%, 1£(t,x)] & w(t)a(t, ¥ 1(1:)lxl) a.e. on [0,%0)
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rd t
-kP P(s) ~7P(s)as}at ;
é:xP{ g\f s) o+ P(s)dsjat < oo
a) hPlY-l(s)?(s)g(s,cHds <@ ,c%o.
[+]

Then between the set of < - bounded solutions of (11) and ~ -
bounded solutions of (12) there is <~ - asymptotic equivalence and
also ( 4 ,p)- integral equivalence.

In this theorem the assumptions are concentrated mainly to the
function g(t,u).It is possible to change the assumptions in such a
way that we will assume more about the expression on the left side
of the inequality in a) and less about the function g(t,u).It holds

Theorem 4, Assume that the following hypotheses from the Theo-
rem 3 are satisfied: a),b) (i), (iii).Instead of b) (ii) let be sa-
tisfied only : jgp(t clit<ee , 0 < c<® ; ingtead of ¢) let be

L. J
satisfied: prp(t) ~"P(t)dt =eo .Finally,let the left side of the

o
inequality a) belong to Ll([O,oo)).Then the conclusions of the
Theorem 3 are still valid.

The proof of Theorem 4 can be made in the same manuer as that
of Theorem 3.The difference is only at the end by proving that

“P-l(t)[x(t) - y(t)] € Lp([O.eo)).In fact,we get in both cases
that
-1 t o4 -1
A () [x() - y()] = é ~ T (B)Y(t)PY “(s)f(s,x(s))ds -

o
oo

- t{o-r-l(t)Y(t)P2Y-1(s)f(s,x(s))ds.
Using the H8lder s inequality we get

Iy l(t)[x(t) -y s
-1 -1 t . 1/p
( S LA (5)Y(£)P Y (8) ()1 P ds) POg ePla,2gras)  © 4
[e]

~1 -] p © 1/p
(5 L+ (6)x(8)P,Y 1 (s) $(a)] i) (t!gp(s.ar)m
where 2¢ 1s the ap - bound of both solutions x(t) and y(t).Now,

we can proceed either as it was done in the proof of Theorem 3 or
we can get

- 1/p
() [x(t) - y(t)]lt{(s 1 10X ()P Y (8) o (s)]Pas) +

L . 1/ .
(Il-rl(t)y(t)y vl@) p (e)1Pas) }(é (s, 2 ¢ )de)
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which complets the proof of Theorem 4.

We note that the hypotheses of Theorem 4 were used by T.G.Hallam
(C3) .He proved that to each solution x(t) of (11) such that
»f_l(t)x(t) 3 Lp([to,oo)) n Ly, ([t,,00)) there exists such a solu-
tion y(t) of (12) that ~F1(t)y(t) € L ([t,,m))a L ([ty,0))
and conversely.

Remark 2, If we substitute in Thegrem 3 the condition b) (ii)
by the condition : ( rgpfs.c)ds)l/p ¢ Lp(to,eo)) and for p
we assume that 1< p <2° ,then the conclusions of Theorem 3 hold.

To complete the problem investigated in Theorem 3 it is necessary
to investigate the cases when p = 1 (p’=o0 ) and p'= 1 (p =0 ).We
get the following corollaries:

Corollary 3.1, ([1]) Let p=1 (p’u oo ).Let the assumptions of
Theoren 3 be satisfied except b) (ii),which let be substituted by
the condition

lim 2 (t) = O for each ¢ £ 0 and 2.(t) € L;(10,))

t»>00

where 2. (t) = sup g(s,c).Then the conclusions of Theorem 3 still
sit

hold.

Corollary 3,2, ([11) Let p = e0 (p“= 1) and let the assumption
a) of Theorem 3 be replaced by
sup ) T (£)X(4)PyY Ya) w ()l + sup 17 L(0)Y(EIRY M (8) v (s)) 8K
0is t<a<e
and let

I+ ()Y (8)P 1 € I ([0,®)) , 0<v<ao

and let the other assumptions of Theorem 3 be valid.Then between
the ~ - bounded solutions of (11) and those of (12) there is (p,v)-
integral equivalence.

Theorem 5. ([1]) Let ~(t), of (t) and A(t) be positive continu-
ous functions for t & t, 0 with lim 0[-1(1:) = 0 as t»e and
L () Lounded on Ct, ,0).Let Y(t) be a fundamental matrix of (12).
Let further w: Lt ,co)xJ +J, J =[0,e), be such that

a) 1£(t,x) | & w(t tx1) fort Bt , xtRn w(t,r) is nonde-
creasing in r for each fixed t 4 t,i w(t,c fr(t)) is integrable
on compact subsets of [t ,00) for each ¢ 2 0 ;

b) J s a(s)w(s,cq(s))ds <e@  for each ¢ 2 0 ;
%

c) S P (t~s) o (s)w(s,cp(a))ds € Lp(Lto.w)) for each ¢ 2 0 ;
tO
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d) Let exist two supplementary projections 1’l and P2 and a con-
stant ¢ » 0 such that

YRy o) «H(a) | % cp(t-s) fort, 2sSt,

o
[Y)P¥ 2 (s) «2(s)1 % ¢ fort St &g ace.

Then between the set of all < = bounded solutions of (11) and the
set of all ~F - bounded solutions of (12) holds (1,p)-integral
equivalence, p Z 1.

As a special case of Theorem 5 we get

Theorem 6, ([1]) Let £4,m,&,m*, X\ be defined as before (at the be-
ginning) .Suppose that there exists w: JxJ =+ J such that
a) w(t,r) is nondecreasing in r for each t €J and w(t,ce"tal’m(t))
is integrable on compact subsets of J for each ¢ & 0;
b) 1£(t,x)12 w(t,!1xl) a.e. on J for each x ¢ R%;
c) (1) f.t w(t,ce‘\t.rm(t))dt < o for each ¢ 20 1if A ® 0;
o

©
(1) § ePu(t,ctt X, (t))at <@ for each ¢ Z 012 A<0;
o

L _J
d) 1m L § e"‘tw(t,ce'\t{ (t))dt = 0 as t_-» e uniformly
c 4 m o

°
with regpect cell,%);

e) g e-‘(t-s)%m.(t-s)tl-lw(t,ceAt*m(t)))dt € 1t ),

(]
pzl.

Then the systems (11) and (12) are asymptotically equivalent and
also (1,p)-integrally equivalent.

We note that the hypotheses b),c) (ii) d) guarantee the existen=—
ce of eech solution x(t) on [to,dv) and the validity of the esti-
mate [x(t)|% D exp{A (t-to)}ym(t-to), o2 t, £t .(See [2],Theo-
rem 5.)This is the fact which leads to the asymptotic and (1l,p)-
integral equivalence between all solutions of (11) and all solu-
tions of (12).

In almost all our Theorems we had the following situation: one
part of assumptions has guaranteed the asymptotic equivalence and
if we have added some further assumptions we obtained also integral
equivalence.It might seem that integral equivalence implies asym-
ptotic equivalence.We are going to demonstrate that this is not
true in general.

Lemme 4. There exists a (nonnegative) Function f(t) defined and
continuous on [0, @) such that scalar equations
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x+ax=£(t), y+ay=0, a»0
are (1,p)-integrally equivalent,but they are not asymptotically
equivalent. £
Proof, e have x(t) = ce 2% 4 S e-a(t-S)f(s)gm ,y(t) = ce™®t,

o I oma(t=
We ere going to seek such £(t)>0,that s ( é a(t s)4‘.’(15)¢is)pd.1;

exists for 1€ p<eo and lim sup Se a(t s)f(s)ds > 0. Put

Tree
g(t) = S e=2(t=8)¢ (5)ds. Then g(t) has to satisfy : Sgp(t)dt <es
and lim sup g(t) > 0.Such functions exist and may be even unboun=
ded.THe™ construction of such a function g(t) does not present any
problem.Then for f we get : £(t) = g (t) + ag(t).

Let us now make some observations concerning the problem of suf-
ficient conditions for the integral equivalence to imply the asym-
ptotic equivalence.,We shall need the following lemma:

Lemma 5, Let £(t) ¢ L ([0, e)) for 1 & p<ee andlf(t)l’ be boun-
ded on [0,e0).Then lim £(t) =0 as t des

The proof of this lemma is similar to that in [4],Lemma 6.The
condition of boundedness of lf(t)l' can be relaxed by uniform con-
tinuity of £(t) on [0,ee) .(See [5], exercise 13.31.)

Theorem 6, Let A(t) = A be a square matrix such that Re A, (A)<
< =-a < 0 for all i.Let £(t,x) be bounded for 0%t y Ix|ceo a.nd let
the systems (11) and (12) be (1,p)=-integrally equivalent.Then they
are also asymptotically equivalent.

Proof. Let x(t) be a solution of (11) and let y(t) be a solution
of (12) and such that they are (1,p)=-integrally equivalent.Then
u(t) = x(t) - y(t) is a solution of the equation

(18) u=Au + £(t,u + y(t))
and .
(19) Slu(t)IPat <eo.
o

Using the method of variation of constants we have
t
(20) u(t) = X(t)c + g X(t-8)f(s,u(s)+y(s))ds

where X(t) is a fundamental matrix of (12) and following the assump-
tion and (7) 1X(t)] ¥ o) exp{-at}, t % 0.Then IX(t)o) & D for

t £ O.Further there exists K »0 such that [£(t,x)|$ K for t % 0

and [x[<®0 ,Therefore from (20) we have

%
lu(t)2 D + Koy § e®(%)gs & p, ror t 2o,
[+
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Thus u(t) is bounded.Then from (18) an easy calculus gives that
Ju(t)i” s AD; + K.From this and from (19), using Lemna 5,we have
that 1im u(t) = 0 as t »e0,

Remark 3, The negutivity of real parts of the characteristic
roots of A and the boundedness of f(t,x) does not guarantee the
agsymptotic equivalence of (11) and (12).As an example we give tie
following: x'= ~ax + k , y'= -ay , a » O.These two equations ore
neither asymptotically nor (1,p)-integrally ecguivalent.

In the same way as Theorem 6 we can prove

Theorem 7, Let A(t) = A and let

(21) £(t,x) = A(t)w(ixl)
where A (t) is a positive bounded function ,w(r) , r % 0, a real
positive function.Let there exist (1,p)-intezrel equivalence bet=-
ween the sets of all bounded solutions of (11) and of (12),respec-
tively.Then there is l-asymptotic equivalence between these sets
of solutions.

Theoren 3, Let A(t) = A and let all solutions of (12) be bounded.
Let (21) hold with A(t) bounded and integrable on 10,% ) and let
w(r), r ¥ 0,be bounded, w(r) & D.Let the systems (11) and (12) be
(1,p)-integrally equivalent, 1 & p<® ,Then the systems (1l) and
(12) are also l-asymptotically equivalent.

Proof, Let Y(t),Y(0) = I,be fundamental matrix of (12).Then
from the boundedness of all solutions of (12) it follows that
N(t) 2 c, t & 0,Using the method of variation of constants we have
for the solution x(t) of (11) tge representation

x(t) = ¥(t)x(0) + § ¥(t-3)f(s,x(s))ds.
(o]

From this we get .
Ix(t)® Cix(0N+ C fA(s)w(ix(a)l )as £ CIx(0)+ CD fA(s)as = K.

Thus all solutions gf (11) are bounded.Let now x(t)oand y(t) be
solutions of (11) and (12),respectively,which are (1,p)-integrally
equivalent.Then u(t) = x(t) = y(t) is bounded and an easy calculus
gives that qu(t)1” S1ANMu(t)] + A(t)w(ix(t)l ) JFrom this it follows
tant fu(t)1” is bounded.Because u(t)e L,([0,)) the use of Lemma 5
gives that 1lim u(t) = 0 as t »ve,

Turn now our attention to the problem whether the -~ asymptotic
equivalence implies (4 oP)-integral equivelence for some p £ 1,The
following example demonstrates that it is not true in general.

Let t, = & (3/2)1 1) o1, 2, .. Evidently lim t meenn k v
Define the function f£(t) as follows: t(tk) = (1/2)% , £(t) is line-
ar in interval [tk,tk+1],k-1,2, .eeAn easy calculus gives that
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-
lim £(t) =0 as t +ee, § £P(t)at =00 for every 1 & pees .Let us

1 4
modify this function such that £ (t) exists and the above properties
continue to hold.Then define z(t) = £ (t) + af(t) , a> O and con-
sider the equations : x'+ax = z(t), y'+ ay = O.Then

t
x(t) = cy(t) = { e'a(t-S)z(s)ds = £(t).

Evidently these two equations are asymptotically equivalent but not
(1,p)-integrally equivalent for 1 § p <eeo .

After all,it is not without the interest the question,how many
functions as £(t) do exist ?If we denote by co([to,-)) the set of
all continuous functions g(t) on cto.-‘) and such that lim g(t) = 0
as t »ee ,then the problem is to characterize the set H -co(cto,-)
- pqoLp([to.“)).As it was told me by T.Saldt,to whom I have posed
this problem,this set is of the second Baire cathegory.It means
that ,, the majority ~° of the functions of Co(Lt,»00)) behave
as our function £(t).

At the end I want to note that I investigated here the systems
(11) and (12) to facilitate the interpretation.All these problems
can be discussed for the equations with deviating argument,for in-
tegral and integro-differential equations and others.The Lemmas
introduced here will be helpful in those investigations.
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