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BOMOGENIZATION OF DIFFERENTIAL OPERATORS
Olga A. Oleinik
Moscow, USSR

In last years the theory of homogenization and G-convergence
of differential operators was developed (see [ I]-[4]and others).
Various problems in the mechanics of strongly inhomogeneous media

lead to the necessity of constructing homogenized models for these
media. In many cases the physical processes in these media can be
described by partial differential equations with abruptly varying
coefficients. Such questions arise in the theory of elagticity, of
heterogeneous media and composite materials, of filtration and in
many other branches of physics and mechanics., A direct numerical
solution of such problems is very difficult even with the aid of
modern computers. It leads to a problem of constructing a so called
homogenized differential equation (it often has constant coefficients)
and the basic requirement thai one has to impose on the homogenized
equation is the proximity of the solutions of the corresponding
boundary-value problems for the original equations and the homoge-
nized equation. This leads to a concept of G-convergence of diffe-
rential operators.

The theory of homogenization and G-convergence for elliptic
operators is described in [2]. Here we state some results on homo-
genization of parabolic equations which are obtained jointly with
V.V. Zhikov and S.M. Kozlov.

Let us ccnsider a parabolic operator of the form
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where A M are positive constants, U ¢ ("’5{’2) We denote by
p()\ M) the class of operators of the form (I) for which (2) and
(3) are walid. Operators from P()\ M belong to a more general
¢class of operators for whiech the theory of the strong G-conver-
gence is described in [4]
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homogenigation for { = O and Qs = C{;:P(I)-

ct{& -
Theorem I is also valid for a larger class of operators
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P (see [5]) . It i@ proved also that under conditions of theorenl
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