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MULTIPLE PICARD’S METHOD FOR THE STIFF
NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS

Nguyen Thanh Bang
Hanoi, Varsaw/ SR Vietnam, Poland

Abstract.A combination of Picard’s method developed by the
suthor in Refs.[”°] and a time-decomposition technique is proposed
to solve the stiff nonlinear two-point boundary value problems in
case where the integration interval is large. A

Some constructive sufficient conditions for convergence of the
combination method are presented.
1.Introduction.It is well known that a broad class of optimal
control problems,the investigation of which,due to Pontryagin’s
maximum principle,reduces to a nonlinear two-point boundary value
problem of the form
4= - A= +BINHE D, =Rk gl @D
for ie[‘f,;’f],subject to the boundary conditions
x(l)= 0, , Maxt)-+Nlt)= ae 4.2)
where ¢ and ¢ are n~-dimensional functions of time t,AH:),Bﬂ') andQ(ﬂ
are known (nxn-dimensional matrices,all elements of which are as-
sumed to be continuous on the integretion interval ‘T’bs‘l.d?)fﬁ}‘l;f)
and g(x)\iﬁ) are assumed-to be continuous in ell arguments in some
closed domain of the (x)"b'b)-space,M and N are known (hxm)-dimensio-
nal constant matrices;‘l‘b is the initial time,t} is the fixed termi-
nal time,d, and & are given n-dimensional vectors.
Here,as elsewhere,the prime denotes the matrix transposition.
The problem is to find the functions
x=xlt) , b="4) , et <% “3)
which solve Eqs.(4.4) subject to the boundary conditions #.2).
Egs.({.4) are known often to have a stiff structure,i.e.some of
the particular solutions increase and others descrease rapidly as
the independent variable changes.The exponential growth of some
components of & solution might lead to numerical difficulties,es-
pecially when the integration interval is large.Because of this
exponential growth,overflow can occur in computer.Even when over=
flow does not occur,in the last case a lot of known approximation
methods[¥€] often fail to offer a satisfact}ox"ty solutiom becsuse
of numerical errors. ) ’
To overcome these difficulties and to provide the convergence
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of the iterative process,a multipoint approach to the iwo-point
boundery value problems was proposed in Ref. [73 and then develo-
ped by meny authors [.5,8 “l

Multiple methods proposed in Refs.f"'-'g‘qrequire to determine
all the boundary values at once,so that they must take the inver-
se of ﬂcm-d)erﬁm-A)-dimensional matrix,where m is a number of subin-
tervals.The technique proposed in Ref.f_“] needs only to take the
inverse of nm-dxnm-i-dimensional matrix.

In this paper,the multiple Picard’s approach to the two-point
boundary velue problem is developed.The present technique requi-
res to take only the inverse of (nxn)-dimensionsl matrix,so that
one is preferable,from computat:.onal point view,to the others
known from literature [/ “, .

2.Multiple Picard’s Method.Let 'xt)and ‘I‘}{b‘ denote j-th Picard’s
jterate for the function 2fl) and d@® which solve Egs (4. 1) subject to
(12,) .If a number 'I':ﬂ;—f,, is large,then,following Refs.r,'1 ,we divide
the overall integration interval ‘bdrd; into m subintervals by
m-1 time points Ti 1:',_,...,1,‘_1 which are intermediate between the
initial time 5 and the final time % and such that the numbers T=
i‘-t' ,i=1,2,..4,m )are sufficiently small.These subintervals
are numbered as follows:subinterval i} ,<¥<%;,i=1,2,...,m.

With the above conventions,let 11(9 and "‘Hﬁdenote the portions
of the functions ‘Ji&)and Jq{t) perteining to the i-th sublnterval.

Then,l'q is clear from the results obtained in Ref.[]t‘xet the
functions lllt')and J1»’((:) must satisfy the, following equations

-%——Ak)ﬁ]wﬁ%]ﬂ;f(%&)“wf),% QeI AR HRCER DY)

for ‘I‘eﬁbﬂ)ﬁ],subaect to the boundary gonditions
igfl)=dy , MUt H- NP (il = . @2
In addition,st the interface between a subinterval and the
next,the, following continuity conditions must be satisfied:
S )=ty s () Welt)m I 1= g (0) =42 m-d. (203)
The functions .I() and "”‘l{)on the right-hand side of Eqs.(2.4)
are assumed,ss a rule,to be already known and the numbers 5;,,;-0,1,
2,...are defined aa follows

=4 ,Vix (29
Let mg)be the @ﬂxm)-dmenswnal transition matrix for the
Eqs.(z.i)subgect to g.Oand we partition this matrix into four (n,m)-

dimensional matrices as follows




’114&)5) Hm(*;E\]
HE5)= [Hm&,a) Hoaft)Z).
Now,let ‘,7\0 denotes the missing initial condition for "w at
t=1 ywe have
Subintervel 1,h<t <t ~
fz;.w]_ [mm ) pH%a(v] "
o) = [ o, Yo 49)
Subinterval @.'ﬁ-é't'é 23=2,3,000,m: .
[{x:& _ [HM G- Hie bt [{aj+[{z§ft) @.6)
®L~ [Hufbhd Hettbollng LG @ '
where the functions ‘_ﬁ(t) and "‘lq(t) are the solution to Egs.(2.4)for
te[} t),subject to the injtial conditions
RESR PR &7
and the functions "«“K"E&)and"q-(t) »i=2,3,...,m,are the solution to
Egs. (2.4) forfe[ti_‘)ﬂ,eubject to the initial conditions
% f-a)= T (Bs)= 0. . @:8),
The problem now consists in determining the vectors "/\o N ‘h_l ,‘7&_1_
coey 'h‘_iand M under which the terminal condition (2.2) and the
continuity conditions(z.S) are satisfied.
It turns out that the following result holds.
THEOREM 1.If the matrices Hnt't‘)ﬂand f‘fl;,,;ﬁﬁ)are nonsingular,then
1/n-dimensional vector representing the value of the fune-
tion “x(®) of J-th Picard”’s iterate at the intermediate time ‘t:'h
is uniquely defined by algebrajic equation )

[RAEN o @.9)
mere Loy Y= Bl GlinBHeaGH20E),  (240)
L A T B S R e
Bl /)= MHy G NHalbort), Glonst) = MHyftnk; "iuﬁ")t)

2/The remeinning n(m-4) boundary conditions 9, ¥y ,%, )%’7%
and %Mcan be then evalua}éd by, formulae

o= Hiz %)L - %] (2.4
Wy = Hag by, 1]+ 4540 (2.12)

and l;y the following recurrent relations

[&]’: H&)t:—»i ?""‘]‘l‘[}{%&ﬂ yim3md (2.43)

Ai-4
3.0n_the Convergence of the Multiple Picard’s Method.
THEOREM 2.Assume
1/The matrices Huﬂj)‘f,)and m}ﬁﬁ)deﬁmd by(z.b)are nonsingular.
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2/The function h(f,f)=B%f,f))g'(z;Q]'is continuous with respect to all
arguments in certain closed domain [ of the Gyf)—epace determined
by the expression
D={Gt): 1zl¢r , theteh] (3.4)
where x=[x/¢Jand the norm of a matrix z is denoted by |z .
3/1In the domain D function h(tﬁ9 is Lipschitzian with respect
to = with the Lipschitz’s constant L, .
4/The numbers 4, and 4, connected with |q,|and Mfl by formulae
Y= 4+y&;(4+%)laol+a;r“'qul
A=+ (T Wizt YT a9l
satisfy the condition
max(,45) < F1 G.2)
vhere p=maz . [Hi®)l ) Ay =IHethit)] | g=[Ghnit)l
fpo=IHeoBi0], = IP-4Gnti)] , v= A+ A fis
5/ 0<TLT = WIMin{t—poy fin Py r~Pie forH , Abinls » Yk} (3.3)
where Tzzqécm’ﬁ )’Q=#-'t,'_4_) W= 4+99r-+ﬁn—.4)f6'r‘;0'.’—_-mwc(iMl)lND)
o(m=4+)?nfﬂ; ) Fm=4+[(m-.2)+99,,,]}0 > H= max ,hk,‘l’)’ ,veteD.

Then,the multiple Picard’s method presented above for solving

the problem @.4)and @-Z)ia convergent.
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