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THE DIMENSION OF A SET OF SINGULARITIES OF WEAK SOLUTIONS 

TO THE NAVIER-STOKES EQUATIONS 

Jifi Neustupa 
Prague, Czechoslovakia 

The flow of a viscous incompressible fluid in a domain 

SL^Br may be described by the Navier-Stokes equations 

(1) s ir+ uj u i ,o= f i " p , i + Aui ci«n.2,3>) , 
(where u4 .= 2u*/dx.) and the equation of continuity 

if j x j 

(2) u i f l - 0 -

It is well known that a weak solution u to the problem, given 

by the equations (1), (2)f by the initial condition 

(3) u(xfO) = uQ(x) (xeSL) 

and the boundary condition 

(4) " laa" 0 

exists on any time interval (OfT) (under certain assumptions about 

the smoothness of bSL and the functions f, u Q ) . It was shown by 

J.Leray [ 2 ] that a "bad behaviourH of the weak solution u is 

concentrated to a set M of time instants (<=(0,T)) so that (OfT) -

- M can be expressed as a unification of at most countably many 

open intervals I (n£ {l,2,3,... } ) such that u becomes after an 

eventual redefinition on a set of a measure zero smooth on each 

of these intervals. Moreover, the Hausdorff dimension of M is 

at most 1/2. 

V.Scheffer [ 4 ] and CFoias, R.Temam £ 1] showed that 

there exists a subset SLQ C tfi, so that 

sup ess |u(x,t)| < + oo if x€ £L-£Lf\ 
t€(OfT) ° 

and the Hausdorff dimension of £LQ is less or equal to 3/2. 

In this contribution, we deal with the case St = R . We 

suppose that u is a weak solution to the problem (1), (2), (3) 

on a time interval (0,T) as it is defined for example in C2] 

and so 
T 
5 ) (u. . u.. .) dx dt < +oo , 
0 R3

 1 , J 1 , J 

SUp 688 \ u. U* dX < + 00 . 
t€(OfT) p3

 X 4 
RJ 
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tWя 8] tiall use the following representation formula for our olution: 

(5) u.(x,t) = J E. Лx-y,t).u.(y,0) dy -

R
J 

t 

- J í E..(x-y,t-r),u.(y,r).u. V(У,-Г) dy dr + 
0
 R
3

 J
 *

 J,ІC 

t 
+ i í, - І J ^ - У ' ^ - ^ ^ ^ <*

 đ r
 (ieU,2,зř) 

u R J 

where E j . are components of a fundamental solution tensor to the 
linearized problem, corresponding to (1), (2), (3)- It is due to 
Oseen C 3 1 that these components have a form 

E i j ( x ' t } = - ^ ( x . t ) - ^ • y , i j ( x » t ) » 
where Ixl 2 

(f(x,t) = ™ I ~ r exp(- -A-) da (t>0). 

In fact, weak solutions satisfy the identity (5) for almost all 
Cx,tD £ R 3x(0,T). Suppose that u is modified in such a way that 
it satisfies (5) for all Cx,t] € R 3x(0,T). 

The formula (5) is used in a little diferent form also by 
Y.Scheffer in [ 4 ] . 

In the following, we shall estimate for each t€(0,T) the 
dimension of a set of such x€ R , where the solution u may have 
eventually an infinite value. 

It may be shown that 

* f ( x ' t } = - 7^7* 7&* ex*(- -?£-> • 
(6) \ A ( f { x , t ) \ < const / ( t + l x l 2 ) 3 / 2 . 

In order to estimate |u^(x,t)l , we shall estimate each term 
en the right-hand side of (5). The most important of these terms 
is the second one because we may achieve the first term and the 
third term to be as "good" as we need choosing u Q and f sufficient­
ly smooth. The second term may be expressed as 

I J 4<fU-y,t-r).u.(y,r)'U. (y,r) dy dr -
0 R3 * 

- I I (f i,(x-y,t-r)-uk(y,r)-u. k(yfr) dy dr . 
0 D3

 7 , 1 J J' 
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Let us denote J-
L
(x,t) the first of these integrals and J

2
(x,t) the 

second of them. Using (6), we can derive: 

(7) IJ,(x,t)l ^ x
 t

 x
 lu-Jy-.r)-^

 k
(y,r)| 

< const \ \ K ^/0 M _
 |
 dy dr , 

I J
3
 ((t-rHlx-yl

2
)

372
-

0
" (t-r)* 

If oC < 1/2 then 

r).u
4
 -,(y,r)| 

dr < +oo. 
} j- Қ(У,r)'U

1 - k
(y,r)| ^ 

o
 R
з (t-Г)* 

Let a €(2,3). There exists *C6 (0,1/2) so that 3-2oc<a. Let us 
denote by @a(t) the set 
( x < R - | 3 i V f } l^y.r^.u^^y.r)! 

B(x,2--)0 (t-r)- for-^mj 

(where B(x,2*m) =- { y||x-yl<2"m} ). It is a consequence of 
Lemma 4*2 in Cl-J that the a-dimensional Hausdorff measure of 
(R3 - Ga(t)) is equal to zero and so dim(R

3- Gfi(t))^ a. 
Let x € Ga(t). We denote UQ = R

3-B(xf2-
mx), Ux -- B(x,2"

mx) -

- Blx9i
mmxml)9 U2 =- B U ^ x " 1 ) - B(x,2-mx"2)t ... 

Using (7), we get 

| J , (x , t ) l< 
P^ r \ i M y / r ) - ^ k (y , r ) 

•̂  const 5 j f $ ift ^ —* *Tk*L *r d r ^ 
fzti I ( ( t - r M x - y l 2 ) 3 ' 2 - 0 0 ( t - r ) * ^ 

-, const £ f ) 2 < 3 - - - M . V r ) I V r - T ^ C y . * ! d y 

г Я S U r 0 ( t - т ) * 

(w*)-, J î iyy^-uitk(.s^)l ^ dr + <; const 2 
^0 un õ (t-т)"' 

+oo 

+ const X 2

( 3 - 2 o t ) ( , B

3 c + - ' ) f ?|uk(y,r)u1 J c(y,T)| ^ 

+C© 

<; C, + const J ] 2 < > 2 c O 0 V * > 2 ( - * x - r * 1 ) a < + co . 
r*l 

We proved the following lemma: 
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Lemma Let Q(t) be a set of such x€R J that |j,(xft)|< +©o. Then 

dim(R3-Q(t)) ̂  a for each a«f(2f3) and hence dim(R
3-Q(t)) ̂  2. 

It is possible to prove the same lemma if we consider Jp(xft) 

instead of J1(xft). If f € L
3/2(R3x(OfT))

3 then the analogous 

result could be proved also in the case of the third term on the 

right-hand side of (5). If uQ € L
2(R 3) 3 and div uQ -= 0 (in the 

sence of distributions) then the first term on the right-hand side 

of (5) is finite for t>0. Thus, the following theorem holds: 

Theorem Let un e L (RJ)J so that div IU s 0 in the sence of Let uQ e L*(RJ)J so that div UQ =- Q 

iationsf f e L3/2(R3x (OfT))
3. Suppose distributions, f e LJ/ (RJx(OfT))
J. Suppose that u is a weak 

solution of the problem (l)f (2)f (3) which is modified on a set 

of a measure zero in such a way that it satisfies (5) for all 

Cx ft] e R 3x(O fT). Let G(t) (for te (OfT)) be a set of such 

x€R 3 that |u(xft)|< + cw. Then dim(R
3-G(t)) < 2. 

References 

Cl3 Foias C.f R.Temam: Some .Analytic and Geometric Properties 

of Solutions of the Evolution Navier-Stokes Equations. 

J. Math, pures et appl. 58 (1979). 339-368. 

[22 Leray J.: Sur le mouvement d9 un liquide visqueux emplissant 

l'espace. Acta Math. 63 (1934), 193-248. 

£33 Oseen C.W.: Neuere Methoden und Ergebnisse in der Hydrodyna-

mik. Leipzig, Akademische Verlagsgesellschaft m.b.H. 1927* 

[4] Scheffer V.: Turbulence and Hausdorff dimension. In "Turbu­

lence and Navier-Stokes Equations'*, Lecture Notes in Mathe­

matics No. 565, Springer-Verlag, Berlin - Heidelberg - New 

York 1976. 

279 


		webmaster@dml.cz
	2012-09-12T23:58:39+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




