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MONOTONE EXTENSIONS OP OPERATORS 

AND THE FIRST BOUNDARY VALUE PROBLEM 

Ivan Netuka 

Prague, CSSR 

1 * The Keldys theorem. Let V^fRm be a relatively compact open set 

and ?€(V) be the space of harmonic functions on V. Put H(V) » 

- {h e C(V); h|y €3e(V)1 and H(fcV) - II (V).^,. Thus f £H( aV) if 

and only if the Dirichlet problem for f has a classical solution. 

Since !!( 3V) + G( 3>V) in general, one is led to the question of a 

reasonable generalization of the notion of the classical solution. 

Definition. The Operator A:C(9V) —*3£(V) is said to be a Keldys 

operator on V, if A is linear, positive and gives the classical so­

lution, provided it exists (i.e. A(hj^v) » h.-, whenever heH(V)), 

There are constructions producing Keldys operators (e.g. Perron^s or 

Wiener#s method) so that no existence problems arise. On the other 

hand, the question of uniqueness is far from being evident. One of 

remarkable results of the classical potential theory reads as follows: 

Theorem (M. V. Keldys, 1941). There is a unique Keldys operator on V. 

(An elementary proof is presented in fsj .) 

2. Problems (cf. [3]). 

P., : Does the Keldys theorem, extend to other second order linear 

PDE's of elliptic or parabolic types? 

P~- What can be said about uniqueness, if one considers positive 

linear (or monotone only) extensions of the classical solution 

to a larger class of (possibly discontinuous) functions? 

P..: If V is not regular, then H('^V) is (as a proper closed subspace) 

a small (« nowhere dense) subset of C(9V). On the other hand, 

II(BV) has to be in a sense large enough to guarantee uniqueness 

of a Keldys operator. How to measure the "size" of H(9V)? 

3. Uniqueness of extensions in Riesz spaces. Suppose that B and D are 

Dedekind complete Riesz spaces, II is a majorizing vector subspace of 

B and T:H —• D is a positive linear mapping. Denote PT » {S; 

S:B —•. D, S increasing, S J H « T } , P® - { S € PT; S linear}, UT * f b € B; 

St(b) - S2(h), S.p S 2!P T}, U° -{...€-P°}. Clearly, 11^0°. In order 

to characterize these sets of uniqueness, we define for b€B 
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b - A^h; h - b, h e l l ] , b » V { h ; h - b, h e l l } , 
T b - A{Th; h «" b, h6H:, T b - V[Th; h - b , hfHJ. 

A Hahn-Banach type argument leads to the following 

o A * •» 

Proposition. UT • UT - ; b 6 B; T b « T b ;. 
n A 

To give a more convenient description of UT and UT, put I! • jh.A 

A ...A h ; n e IN , h.€ H>, and suppose that there is a Riesz subsoace 

LcB containing All. for every bounded set H,<= n and that there 

exists a mapping T :L —* D having the following properties: 

W TolH * T ; ^ To is a R i e s z homomorphism; (3) T (A Hj) -AT (Hj) 

whenever Hj is a lower bounded and lower directed subset of H. With 

these assumptions we have the following 

Theorem. UT -- 11° - [b€B; TQ(b - b) = 0* . 

4. Uniqueness of extensions in function spaces. Let us consider a 

special case. Let Y be a metrizable compact topological space, 

B • B(Y) be the Riesz space of bounded functions on Y and H-C(Y) be 

a closed vector space linearly separating points of Y and containing 

a strictly positive function. Recall that the point ye Y is termed a 

Choquet point of Y (w.r.t. H), if t (« the Dirac measure at y) is 

the only positive Radon measure v on Y satisfying h(y) • / h du for 

every h€ H. The set ChH Y of Choquet points is of type G,f. If L -

*C gi - g?' &i * o w e r semicontinuous], then L satisfies hypotheses of 

Sec. 3. Suppose that D is now a Dedekind complete Riesz space of 

functions defined on a set V. Let TQ:L —* D satisfying (1) and (2) be 

described by means of a family M m[f*xl xev] of Radon measures on Y 

in the sense that T f(x)*J*f dM-x whenever f € L and xeV. One can 

prove that the condition (3) holds. (Observe that in view of condi­

tions (1) and (2), M is uniquely determined by T on H, thus by (3) 

and a Stone-Weierstrass type argument on C(Y) and, consequently, on 

L.) A Borel set QcY is said to be negligible if/^CQ) " 0 for every 

X6V. Given f c B(Y) , denote by d(f) the set of points of disconti­

nuity of f. 

Proposition. If fcB(Y), then d(f)=r(yeY; f(y) • f (y)v e d(f) u 

yj (YXChH Y). 

Theorem. The following conditions are equivalent: (i) C(Y)<=UT; 

(ii) C(Y)CU°; (iii) (y€Y; f(y) * f(y)} is negligible for every 

feC(Y); (iv) Y^ChjjY is negligible; (v) UT - U° - [f6B(Y); d(f) is 

negligible}. 
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5. Applications to PDE*s. Problems mentioned in Sec. 2 can be in­
vestigated in a natural way in the context of harmonic spaces [l] 
(cf. [2J) including as examples a wide class of elliptic and para­
bolic PDE's. Let X be a locally compact space with a countable base. 
Suppose that with every open set U in X, a linear space 3C(U) of real 
continuous functions on U (called harmonic functions on U) is asso­
ciated in such a way that # -fcfc (U) ; U<= x open} is a sheaf. Then 
(X,3e) is called a harmonic space, if the following axioms hold: 

I. The regular sets for the Dirichlet problem form a base of X. 
II. If U is open and {-Oj is a sequence of functions harmonic on 

U, h ^ h and h is locally bounded, then h e X ( U ) . 
III. 16 3C(X) and 3t+(X) separates the points of X. 

Examples. Let X be a bounded open subset of B m and3C(U) - fufiC (U) ; 

£ f6\ u - 0} or#(U) »{uCC 2(U); C 3? u -9-u}. 
j«1 J j-1 J 

Consider a relatively compact open subset V of a harmonic space 
(X,3e) and define H(V) , H(3V) similarly as in Sec. 1. Let T be the 
operator of the classical solution of the Dirichlet problem (i.e. 
T(h|£V) «

 niv» heH(V)). !*- order to apply results of Sec. 4, put 
Y -9V, D -#*(V) -3C+(V) and for f eL define TQf as the Perron type 
solution for f. Remark that the corresponding family {A- ; xevj is 
then nothing else than the system of harmonic measures. Denote by Vj 
the set of irregular points of V. It is known (Bliedtner-Hansen) 
that'dV\Ch H l a v )dV is negligible, iff V£ is negligible. Write U, U° 
instead of UT, U

0, and call a Keldys set or a K-set, if C©V)<=U° or 
C(3V)«-U, respectively. 

Answers to questions formulated in Sec. 2 are included in the fol­
lowing theorem. (For further results, details, bibliography, cdmments 
and historical remarks, the reader is referred to [4], [5].) 

Theorem (Keldys, Brelot, Lukes, H. and U. Schirmeiers, Netuka)• The 
following conditions are equivalent: 

(1) V is a Keldys set. 
(2) V is a K-set. 
(3) For every f e c ( 9 V) , { y * 3 V ; f(y) + f(y)} i s negl igible . 
(4) 9V\ChH ( a v>'3 V i s negl igible . 
(5) Vi is negligible. 
(6) U - U° - {f 6 B ( 3 V ) ; d(f) is negligible}. 

Remark finally that while the set of irregular points is negligible 
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in the case of elliptic equations for every open set, the same is no 

longer true e.g. for the heat equation. 
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