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DUALITY METHODS IN THE THEORY OF OPTIMAL CONTROL

Jén LoviZek
Bratislava, GSSR

Let 2 be a open bounded domain in Ez with a sufficiently

snooth boundaryag.ﬁwe define the state u(e) of our system as the
solution of the variational inequality

ufe)e K(R)

Gy [;\MVZ- e72(v - ure)) aR 2

(1

(2)

£ +Be) (v - ufe)a® for any ve€ X&)
where

KIR) -{7535(9) v iy} is a (non-empty) closed convex subset
of B(Q)

K (e) =C - is the Lipschitz function
e = control funetion.
The cost function is given by

Jle) = L{u (e)- 54) 23Q + Njel izm)

where s, is given in 1-2(52) and vhere N is a given posi-
tive number.

The prodlem of optimal control is now find
inf J (e)e eU.d(Q.)- closed convex subset of LZ(-Q) (the set of

admissable eontrola).

Then '

there exists e € U ,(R) such that

J(e)= inf J(e)

( the proof see Lions[2]; HlavdZek - Bock - LoviXek [4] ) .

One can think to problem (2) as an optimal control related to
control of free surfaces. In this respect a more realistic
problem would be to try to find e € U, (Q) minimizing the

adistance, of the free surface in case K(Q) is given vy
(1) to & given surface.
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Duality methods .
Setting of the problem.

2
We consider two functions P and G from HO(Q) and L, (Q)-R
such that

P and G are lower semicontinuous and convex on B:‘;(Q-) and
I.z ( Q.) respectively such that

~o{F(V) & +oc; =oo(B(p) € +oo; P and G are not identi-
cally +eo,

Now we derive the dual formulation of the problem , which
we write in the form

(%) int {r(v.e) + G(A(e) v)}
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v B2(R)

e U,(Q)

where .

P(v,e)= -(2 + B e")Iaz(Q) + XK@{V)
7(«2)6) is the indicator fumction of K(Q) .

We have

<A(e) u,v)nﬁm a (e,u,v)

where

Ate) =X(B2(Q): F3(Q) . and A(e)=VHHOV?).

Then by using ( second representation theorem ) we can write
a(e,u,v) -(A (®)u, A“(e) ')1'2(9)'

Next we get

Ae) = L) :(A'(e) = (4% (e)%¢ X(1,(Q) 3 rz(g)))

Ace)e X(B2(R) 51,(R) 3 for eny egU ,(Q)

¢ (n(e) = [ocef? Q) PleE L(Q) s  eeU,y(Q) .



Ve shall formulate the dual problem(P*)vy
(Peup {--!"(K(e) ) - G’(—ﬂ)} .

Fe 1,(Q)

e e U q(R)

- 2
e i-(AH"'")Lz&’ 4 £+ B Oyg -V “lﬂl‘z&}
e, (!

Nef+2+Bedo

eg U.‘(Q,)

Then it is known ( cf. Exeland ~ Teman [1'1) the problem( m has -
a unique solution .

Next we take

0 e a0l g - (20 3 o)
(7(3,7) is a convex If.s.c function of X(R) into 'l) .

Iet A(R) be a closed convex cone of I_{)defining a partial
ordering relation & and let AR)vde 1ts closed in (L (R)*.
Ve aotZ! =y-1| 'X'Q)-o L.(R)} -
Por each e (1 .RQ)) P'Z 0 the mapping v (bt B ﬁh&) of IR)
into R s I.s.c .
{vum)l Bvéoft 40 .
Then the d{nl problem is )
sup inf 7(..?) -{ds 77 } .
{,";)ﬁ‘io $ vEX(R) LR
. gu“(Q) :
Ve define the lagrangian function {for amy peA(R)3 f'S 0)
L(v,5%e) =Fle,v) - (B v)an .

Next by using idea Begis - Glowinaki [3] ;

we have the problem ( 'f-’t)

L(u(tie)s Fie) $2(v,phe) for any vEX(Q)
3 (egr)s 3(etf) 3p) for any e€U,,(R)

(vmere 3(o.) = Ju () - 24 [y R009 1, (q)
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land finally we search TD¥e K:‘(Q)such that :
<{P*- 7*; B u(p% e(f‘))}f&? for any p'e A*(Q),

Theorem
Let us assume, that
there exists bEH %(R)and BER such that for any pEA*(Q)

and vgng(@) we have {p*; B de) <b » v>112(9,§ rol
[}

when

'f;;'-.'ﬁ" in A*(Q)weakly star and w—-u in l_!:‘;(S?.) weakly,
then 1lim inf <’13;, B ur),..z)<f)’,‘ B u%&)('ﬁz, 3“€K’(Q,)) .
Then optimal problem (&)has at least one solution .
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