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CAUCHY'S PROBLEM IN THE L/RGEFOR NONLINEAR HYPERBOLIC
EQUATIONS AND FOR THE KORTEWEG - DE VRIES EQUATION

Stanislav N. KruZhkov
Moscow University, USSR

In introductory part of the paper it is given the short sur-
vey of the development of the global solvab‘:l.lity theory to the
Cauchy problem in the stripe "-T= (O,T)X R for the equation

U, +(FU)p =0 , =t (2 (1)
with the initial condition
“(0,2): t&o (30) . (2)
One of the basic methods of the construction of the generalized
solution ¥ (£,%)to the problem (1),(2) is the "vanishing viscosity
method": & (£,20)= bm w (tx) where ué‘({ X)- is the solution
of the Cauchy proﬁlem for the parabolic equation

U+ (FUE))p = € Ui - (3
This method was justified firstly in the well known paper of
E.Hopf [1] in the case /—-'(a) %2, e limiting process as E-»+0
in the corresponding equation (3) (the Burgers’s equation)

e €,,¢€ €
Uy + UWlUp =EUR ()]
leads to the notion of the generalized solution {&(t,x) of the
equation
téi. + t(/t(,x =0 (5)

in the sense of the integral identity

Jutetfuree)dadt=o veeb=mmy ;

the above aolut:lons satisfy the entropy condition in the. points
of the discontinuity (along the shock waves):
Wt 2-0) > w(t,2+0) . N

The global solvability questions of the problem (1),(2) for the
convex F(t)were considered in the papers of 0.A.OleYnik [2],
P.D.Lax [3], A.N.Tikhonov and A.A.Semarski¥ [4]. For the noncon-
vex P(“) the theory of this problem in the class of bounded and
measurable functions is constructed in the paper [5].

Note that the generalized [(6),(7)] -solution of the problem
(5),(2) with the initial function %, (X)= hflz x-k!n(xq)ror 22
is the function
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[0 for a €0 and x =vat ,
U @,x)= lore 2o 0< X< VZ¢ .

In particular (according to the effect of the dissipation of the
energy at the shock waves)
j utz)dz = 32 A0 s trwo. (@
The domination of the dispersion over the dissipation in the
simplest gas-dynamic model leads to the below Korteweg-de Vries's
equation (KdV)

(o2 -—
Ui+ u =@ u ac:c;(“ =const . (9)
Since for the solution USzht the problem (9),(2) the
conservation law +

00 * 00
[ («“tz)de= fug'(x)aloc, (10)

-co ~ 00 “,
is valid then according to (8) the functions 74 @a’)eannot conver-
ge strongly as((,*o to the generalized solution ﬂ(t‘ x}of the
problem (5),(2). The first result on the weak convergence ¥f (‘! x)
asg -» 0is established in the paper of P,D.Lax and C,D.,Levermore
[6] under the condition that ¢£o(%¢) has & single maximum.

But the Cauchy problem for KdV equation with discontinuous
initial data was not studied essentially. In particular uniqueness
theorems are not available and the existence is proved under the
strict restriction on the structure of the initial function.
Different solvability questions for KdV equation were considered
in [6] - [15] .

In the main part of this paper the theory of generalized
solutions to the Cauchy problem for KAV equation is considered.
Here the results on existence, uniqueness and regulerity are for-
mulated; these results are new and for the case of smooth initial
data. They are received by the author Jointly with A.V Paminskii
and they will be published in DAN USSR,

Generalized Solutions of KdV Equation
Assume that a,(x)é[z(k‘)and for the simplicity we shail
consider KdV equation of the form
Up + UUgp + Ugogoge =0 (11)
Definition 1. A function % (%, 2)€/2®(T)1s called o geners
lized solution of the problem (11) (2) ‘in the stripe 77,',, ifs

1 )V‘PEE"’UT},.)
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ﬁ(urf t i“ Yo + U gz ) xdt=0, (12)

2) there exists a set gC[O T1, mes &= =0 such that for ff[o 7']\8
the function ¥ (£,2¢)is defined almost everywhere in 2 ¥ and for
Vw(oc)ec"w(k')

f w@x)w(z)dax —~ f Uy ()W@)d z, 25 L>+0,el0,TINE (13)
Theorem 1§existencez. Suppose that for some A>0

+d 2
/.2:": U, alx+fu ol <o0. men the generalized solution

‘u(\f ,98)0f the problem (11),(2) exists. It is continuous in 7T.7.
(for t>0).

Class of Correctness

Definition 2. The generalized solution of the problem (11),
(2) belongs to the class of the correctness it

‘fii‘g’.’, J[ ] o0 % 12, 2)doe + / af(t x)alx] =Ml i< co.
Theoren g(continuous dependence on initiel data). Let LA 2)

and U (t OC) be generalized solutions of the problem (11),(2) in
the sense of the def.2 with initial funct:lonsﬂ o(X)and U ()
respectively. Denotef(x) mm[1 e ]:z'ek Then

ess sup f g(x)(a,(tx) tf{tx))gdx

teloT] -
< c('l‘ MU, T, ML, T]) f (o @)-t5@) .
Consequence. The generalized solution of the problem (11),

(2) in the sense of the def.2 is unigque.

Theorem nggstgnce in the class of correctness).Assume that

f xl’u 2y +_ uo(x) dr=Mo <oo. (15)
Then the%generalized solution u(t x)ot the problem (11),(2) im
the sense of def.2 exists. It is continuoua for >0 end forVaeR’!

wup lutml<cla,TM,)¢ ¥

xza +00

J1ue,x)- a,,(x)lozx.o s, T=40.
@
Theorem 4(regularity). Let the assumption (15) of theorem 3

be mlﬁ.lled and for some P>0 and integer numbers ID>0 q/> 0
HadlE
f 2PV i w2 m)dx < co.
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Then the generalized solution (£ 2)of the problem (11),(2) im
the sense of def 2 has in TT,r (for ¢t>0) continuous derivatives

of the form 3 eu(f x)/af aa:'e 0s k sp,0s l< g -

In connection with the theorem 2 note that the Cauchy problem
for the Burgers's equation (4) (dissipation dominates over dis-
persion) has the unique solution “e(t,x)in the classes without
any restrictions on the growth as|X|>o0o To understand this it
is sufficient tg, remerk that the function W E(t,x)= exp[U7/2¢] pnere

Uttx)=| [eu 1))t +wttdz,

satisfies the hoéat equations Wt =& wxx s 88 a consequence
of the D.V.Widder's result [16], the positive function W¢(% x)
(es well as Uf(t,X)) 1s unique defined by ite initial data.
Analogous results are proved in the case of the first boun-
dary value problem for the equation (11) in Tr =(0,T)x (0,+00).
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