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ON THE BEHAVIOUR OF THE GENERALIZED SOLUTION OF THE BIHARMONIC 

EQUATION IN TV/O DIMENSIONS NEAR SINGULAR POINT OF THE BOUNDARY 

Jiri Kopacek 

Prague, CSSR 

The results of this contribution were obtained commonly by 0. A. 

Olejnik, V. A. Kondratjev from Moscow University and me and will be 

published in tl]• 

1. Notations and definitions 

Let iicR 2 be a bounded domain, ^iSl. By H2(J2,F) we denote the 

closure in_the norm Hull •[ 5Z |D u| dx of the set of functions 

from C (12), vanishing in some neighbourhood of T. By generalized 

solution of the problem 

(1) A 2 u - f inil, u - £u/fn - 0 on T 

we understand the function u€H (il,T), satisfying the identity 

(1«) J I . D*u • D*v dx - J f . v dx for all veH2(JI,<Tli). 

2. The main theorem 

Theorem. For.il, T defined above let 0 be a point from P. Suppose that 

for some T > 0 the assumptions 

i)<fj!n{x€R2, Hx - OH - tj i 0 for all te (0, T) , 
ii) <fil nfilj, c r 

hold, where A t -il A { X, | X - ol < t}. 

Then there exist constants C.̂  depending on T (but not on i2 and u) 

such that for arbitrary generalized solution u of (1) with f • 0 in 

XIT following estimates hold 

(3) J E(u) dx £ C- • t0'304 J E(u) dx for t£(0, T), 

(4) |u(x)l2< C, llx - oi2>304 J E(u) dx for x*il,l|x - o||<T/2, 

where E(u) - u2 • 2 u2 • u2 . 
x1 1 x1x2 x2 2 

If in addition to above assumptions SL satisfies 
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iii) for each x°€ T , \ x° - 0| £ T/2 the circle It x 
intersects T for all t€ (0, | x° - 0|/2^ , 

then the estimate 

(4«) \grad u(x)| 2* C- || x - 0»0'304 J E(u) dx 

holds too. 

3. The sketch of the proof of the theorem 

We suppose 0 - (0, 0) and introduce polar coordinates r and *f. 
a) for ^ €C1(0, T) , fi < 0, 0" piecewise continuous on^ (0, T> , 
d> (t) - 1, A»(T) - 0 let<j>(r, t) -<f)(r) for t ̂  r < T, J« 1 for 
r £ T,^ linear on (0, t) and in C ( 0 , T) . Substituting in (1f) v » u. 
(0(r, t) - 1), we get after some integrations by parts the identity 

CS) J {[<J> Ct) • Cr - t). f *(t)] . E(u) + r"1 I <£»(t)| . K2(u)} dx 
&t 

• JC <f>(r).E(u) -^"(rj.K-U) - r"1 £• (r) .K2(u)] dx < J E(u) dx 
ilT\il t -«T 

with K^u) - u2 • (r"1uj)2 - u-urr» K2(u) - u2 • 2(r"1uf)
2 - r"1u.ur. 

b) If $ moreover satisfies 

(6) J [ E(u)<f> (r) - f'OO.K^u) - r"1 £' (r) .K2u ] df > 0 
Sr 

for all r€(0, T) and all u«C in a neighbourhood of Sr, vanishing 
with first derivatives in points of <ffl.n<f.flLT jby Sr we denote the 
set of *f such that the point x • (r cos^, r sin^f) belongs toil. , by 
Sr the set of all such points x) we get from (5) using <j>' £ 0, (£ > 1, 
J K2(u) d^ > 0 the estimate 

Sr 

(7) J E ( U ) d x £ (^(t))'1 J E(u) dx. 
~\ T 

c) Now we shall construct the function (p. Denoting z - r • u y r, 
w - r"1.u, v - u r, we see, that ^>will satisfy (6) if it satisfies 

C8) / (£(w, v, z).<|>(r) - r24>"Xit«, v, z) - r. 

• ^ ^ C " . v> * » d f * ° 01 

for all r6(0, T) and all w«H z(0, 2*), vefi^O, 2t) , zCL 2(0, 2T) 
where£ (w, v, z) - z2 • (w" • v ) 2 • 2(v' - w ,) 2,X 1 - v

2*(w')2 - w.z, 
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3(2 » v
2 • 2(w')2 - v . w . (We use that S c (0, 2lT) and the equality 

E(u) - u2
r • r"

2((r"1.u// • u r )
2 • 2(urf - r

_1.Uj)2).) 

For fixed w, v, z with£(w, v, z) » 1 (8) will be satisfied by the 

function 

(9) (^(r/T)""-+^(r/T)P)/(
n<.*p) 

where 

-(k, - k,H(k. - k,)2 • 4 k. 
(9') «- - ' 2 k 

(k, - k 2)^(k. - k 2)* • 4 k. 

P nq 
which solves the equation 

(10) r2())"(r)k1 + r^'(r)k2 - <f) , <j> (T) - 1, $ • (T) - 0 
2? 

with kj - / XiC w> v, z) dj. (We may assume kj > 0.) 

The function (9) satisfies <f>'< 0,<j>"> 0,<j)"(r) + T~*<\>'(T)> 0 for 

0 < r £ T. Using this it is easily seen that if </> satisfies (10) 

then it satisfies 

(10') r 2 ^ " ^ ) ^ + r(|>'(r)k2 < <|>(r) 

with kj, k2 satisfying one of the following pairs of conditions 
~ ~ **w . 
k.| • k . j, K.j .— k . j, k.| — k . j, 
*-v fw f*r +* 

k2 - k2» k2 " k2» k1 " *2 " k1 " k2* 

Now we prove the estimates 

max kj(w, v, z) « ]T.j 5 3,2679, 

max (k-(w, v, z) - k2(w, v)) £ 2,29395 

where the max are taken on the set lw,v,z, J £ (w,v,z) df • l|. 

So the function (9) corresponding to kj « 3,2679 and k2 - 3,2679 -

2,29395 satisfies (8) for all w, v, z. Calculating the corresponding 

ocfrom (9f), we obtain > 0,304. So the estimate (3) is proved. 

(4) follows from (3) e.g. by imbedding theorem. 

Remark 1. From results of \l\9 [3] it follows that for 

il-[x€R 2, x - (x-j, x2),llxll ¥ x ^ the estimate |u(x)|2£ clxl3 

holds for arbitrary generalized solution considered in theorem proved 

above. It is an open problem if such estimate is valid for general J-t 

as in our theorem. 
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Remark 2. One may derive other sufficient conditions for y to sa­

tisfy (6) e.g. 

(I) <J> (T) - 1, $ • (T) - 0, <j> • £ 0, <J>" > 0, 4> "(r) + r"1 <f> • (r) > 0, 
0 < r £ T , 2( « (r ) /¥ ) 2 t f"(r ) + r~1 * • (r)) • (^(r)/2TT ) 2<|>"(r) 
• 4 r(*(r)/2rt )3/4>,|£(|> 

or 

(II) instead of inequality from (I) one assume the inequality 

(2 + 2l7)tf(r)/2?)2(j>"(r)£</> (r), 0 < r £ T, 

where *(r) is the length of largest arc in S . 

These conditions yield in the case of general domain not so good 

estimates as in our theorem, but in special cases of JL may give e.g. 

exponential decay of J E(u) dx as t •—» 0, since they exploit the 

form of XL . ^t 

4. Further results 

a) From above results one may derive uniqueness theorems for Diri-

chlet problem for A u • f in unbounded domains. 

b) Analogously one may study the decay of energy or of the solution 

of (1) in unbounded domains as |x| —*• o©. One can prove e.g. that for 

the domain il - {x - (x.|, x2) - (r cosf , r sinj),f € (0,ui)J the 
solution with finite energy tends to zero as Ixl — &> for I* 
sufficiently small. Since for ** - 2T this is not true, it is an open 

problem to find the largest <*- for which this is true. 
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