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ON SOME SINGULAR BOUNDARY VALUE PROBLEMS 

FOR ORDINARY DIFFERENTIAL EQUATIONS 

I. T. Kiguradze Tbilisi, USSR 

In the present paper for the differential equation 

u ( n ) = f(t,u,u',...,un-1) (1) 

the following boundary value problems 

jJA'~'b)''f(ue)r",M<',~?(9), M?~%.)- <f/«(a),..., M*%j) (jly 

*(..,,...,«. ;/-<>-~><*-?) r and 

are considered. 

These problems arose in connection with an attempt to answer 

two open questions of the qualitative theory of nonautonomous ordi­

nary differential equations. The first of then deals with the exis­

tence of vanishing at infinity nonzero solutions of the linear dif­

ferential equation 

u ( n ) = h(t)u (4) 

(see £\J , [2~] )i an<a tne second one - with the existence of so -

- called proper solutions of nonlinear differential equations with 

strongly increasing right-hand sides, which is e. g. the Emden -

- Fowler equation 

u ( n ) -= h(t) iul sign u (5) 

(see PJ ). 

•Below denote by Br the K - dimensional real .Euclidean space, 

and by R+ - the interval Cb|+00--" • In what follows it is assumed 

that n ̂  2, nQ is the entire part of j- , and 

iP±i R ^ R , ^ : Rn-*R and V 2 j : R
n-*R(i*1,... ,n0; j=1,... ,n-na) 

are continuous functions, satisfying the conditions 
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sup{(1+ I*-} +. . .+ |Xnl ) | y i ( ) C l f . . . f - X n ) l : ( X l f . . . f X n ) € R ^ + ^ 

sup{(1 + U-l +...+ |XJ ) |y i i (X1 , . . . fXn ) | : (X1 , . . . ,^n )CR5<+o6 

and 

sup{(i+ |xtl +...+ l*nl ) i y 2 j ( X 1 , . . . , x n ) l : ( x 1 , . . . , x n ) e R n J < + ^ . 

Consider f i r s t the problem on the f i n i t e interval , i . e. the 

problem (1 ) , (2 ) . 

T h e o r e m t . Let the function f: £o ,a l x Rn-^R be con­

tinuous and 

- ^ ( t ) ^ (-1)n"no"1 f ( t f X l f . . . f X n ) s i g n X 1 i h 2 ( t , X 1 , . . . , X n ) (6) 
n ° 

where fy : ro fal-**R+ and h-,: Co,a7 x R °—*R+ are continuous 

functions. Then the problem (1) , (2 ) i s solvable. 

Ih the boundary conditions have the form 

u C i - 1 ) (0 ) -= 0, u ( j " 1 } ( a l = 0 ( i=1 , . . . ,n Q ; j = 1 , . . . ,n-n0) (2Q) 

then it is possible to prove the existence theorem containing the 

case when the function f O o , a [ x Rn-*R has nonintegrable singula­

rities when t=-0 and t=a • In this case the solution of the 

problem (1)f(2 ) will be sought in the class of n-times conti­

nuously differentiable functions u:3o,a£-*Rn end under 

u(i-1) (0) and u ^ ^ U ) we will mean 

llmu ( i" 1 ) (t) and lim u ( j - 1 } (t). 
t-»0+ t-»a_ 

T h e o r e m 2 . Let the function f: 3 0 , a C x Rn-»R be con­

tinuous and sat i s fy the inequal i t ies (6) where hj : 3o ,aC-*R + 

i s continuous and bounded, .h.-,: 3o,aC-*R+ i s continuous, besides 

i f n*2nQ + 1 for any T*^-^ we have 
n„-1/2_ 1/2 { n„ n - 1 / 2 1/2 , . ._ , 

(a-t) ^ ( t . í a - t ) ° X. , . . . , (a- t ) X n ): 1x .̂1+...+ fcnj 
Then the problem (1),(2) is solvable. 
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For the problem on the infinite interval, i. e. problem (1), 

(3) the following statements hold true. 

T h e o r e m 3 • Let the function f: R
+
 x R

n
-^R be conti­

nuous and satisfy the inequalities (5) where h- :R
+
—*R

+
 and 

n 
h

2
:R

+
 x R —»R+ are continuous functions and 

І •
+
~n-n _ 1/2 
t °[í+(2n0+1-n)ln O+tf] h, (t)dt<+<<> . 

'0 

Then the problem 0),(3) is solvable. 

T h e o r e m 4 . Let the function f be continuous and sa­

tisfy the inequalities 

ho ( t )'*l' " M 0 - (- 1 ) I W l 0" -f(t,Xll...fXn) signX1 ^ 

h 2 ( t t X i f « i x
n

 } where * ^ 1 , hk:R+-*R+ (k=0,1 ) and 
n o 

lip :R+ x R —* R+ ere continuous functions, 

I t
n " 1 / 2 h - ( t ) d t < +<*-> and for a certain € >0 

^o 

n- ^LzJL (i+fc) 
lim t * *-„(t) = + *° • 

Then the problem 0),(3) he s a solution u such that 

lim t 1 / 2 + i u ( i ) (t) = 0 (i=0,1,...,n -1). (7) 

Let the function f:R+ x R
n-^R be continuous 8nd f(t,0,...0)= 

= 0. A solution u of the equation 0 ) defined in a certain 

neighborhood of +°^ is said to be a p r o p e r one if for any 

sufficiently large- t 

sup£|u(s)J : t £ s < + « O J ^ 0 . 

A proper solution is said to be en o s c i l l a t o r y one if 

it h8s a sequence of zeros tending to + #* • 
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By means of Theorems 3 and 4 the conditions of the existence 

of proper oscillatory solutions of the equation (1 ) end of a 

n - dimensional family of vanishing at the infinity solutions of 

the equation (4) are derived. By this the answer is given to 

those two questions which were posed above. 

For any ^ / 1 set 

n
Q 

H(n,X) = n - 1 +
 1
 * H ) ( A - 1 ) f o r . A > l , 

JA (n, A) s n - n
Q
 + (n

Q
-1 )A for A < 1 . 

T h e o r e m 5 • Let nJ4 and let the function f sa­

tisfy the inequalities 

h
0
(tiW(^

l
)d(-1)

n
"

n
°" f(t,X

1
,...,^C

n
)signX

1
^h(t,X

t
,...,X

n
 ) 

n ° 
where CO :R-*R

+
,h

0
:R

+
-* R

+
 and h:R

+
 x R

 0
—* R

+
 are continuous 

functions 

< O ( x ) >
0
 for Xt 0, lim inf ^ U r ^ O f*4 1 

KI—fr+00 1*1 

and 

-+•0 І t/*(n,X) h()(t)đt = +«> 
1 

Let in addition the Cauchy problem for the equation (1) with 

the zero initial conditions have only the zero solution. Then 

there exists a continuum of proper oscillatory solutions of this 

equation. 

C o r o l l a r y . If n^4, -*>1 
-1 f 

(-1)
П
~

П
°~ Һ(t)£0 for t*R+ and \ t Л ^ - ^ ^ W t J І d t = 

+ 00 f 

| then the equation (5) has a continuum of proper oscillatory so-

I lutions. 

Consider the equation (4) with a continuous coefficient 

\2 jfirtgu*, Eauadiff
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h: R+-*R • 
n 

Denote by U_ the set of all solutions of this equation 

satisfying the condition 

£ [u ° (t)J đt<+<X> .1 

n-n -1 
T h e o r e m 6 . If (-1) ° h ( t ) £ o for t £ R+ , then 

n 
U i s a n - dimensional l inear space. Moreover for any t € R^ 

n o and c . € R ( i-1 , . . . , n ) there e x i s t s the unique u € U
n 

s a t i s f y i n g the i n i t i a l condit ions 

u ( i ~ 1 ) ( t Q ) = c. ( i = 1 , . . . , nQ) . 

T h e o r e m 7 . If 
n-n -1 

lim (-1) ° t n h ( t ) = +** 

n 

then Un is e n - dimensional linear space whose arbitrary ele­

ment satisfies the conditions (7) 

R e f e r e n c e s 

1. M. Biernacki. Sur l'équation differentielle y + A(x)y = 0, 

Annnles Univ. M. Curie-Sklodowska, 1952, 6, 65-78. 

2. M. ävec. Зur le comportemênt asymptotique des intégreles de 

l'equetion différentielle vy • Q(x)y =- 0 . Őechoslov. mat. 

žпrnn^, 1958, 8 (83), 230-245 . 

3. I. T. Kigurađze. On the oscillatory and monotone solutions of 

ordinary differential equations. Arch. Math.--, 1978, H , N 1 f 

21-44. 

178 


		webmaster@dml.cz
	2012-09-12T23:25:13+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




