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ON SOME SINGULAR BOUNDARY VALUE PROBLEMS
FOR ORDINARY DIFFERENTIAL EQUATIONS
I. T. Kiguradze Tbilisi, USSR

In the present paper for the differential equation
u® = 240,00, 6071 (1)
the following boundary value problems

P Z’(l‘/')'- (-7)0)) M'F?i)- (uca),..., ) )

vty ey Ay l/'l)' o M-y )
and

"”(0} Z(ato),...,a (o)) (€ %) /f ""'{d]a’l(no (s)

are considered,

These problems srose in connection with an attempt to answer
two open questions of the qualitative theory of nonautonomous ordi-
nery differentiasl equations. The first of them deals with the exise-
tence of vanishing at infinity nonzero solutions of the linear dif-

ferential equation
u® = Bt (4)

(see [i] , [2] ), and the second one - with the existence of so =
- called proper solutions of nonlinear differentisl equations with
strongly increasing right-hand sides, which is e. g. the Emden -

- Fowler equation

A
u(n) = h(t) Jul sign u (5)

(see [3] ).
-Below denote by R the K - dimensionel rea} Euclidean space,
and by R, - the interval f0,+°°f. In what follows it is assumed

that n 2 2, n, is the entire part of i‘- , and
yi: Rn—.R, ?‘i= Rn'-)R and Yzj:: Rn-’R(i=1 ,...,nO;J=1,-...n-n°)

are continuous functions, satisfying the conditions
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sup{(i+ 1] *uuut IXo1 ) | PilXpeens X 10Xy pene, X ) €RICeg

Sup{("" lx1l +ooot lxnl )lj’li(x‘....,xn)l:(x1,...,Kn)€Rl}<+°°
end
8\1p{(1+ !X..l Fooot ‘xnl )lfzj( xl,...,Xn)‘:(x.‘,...,xn)éR’?<+‘°.

Consider first the problem on the finite interval, i. e. the

problem (1), (2).

Theorem i, Let the function f£: [0,6] x R®>»R be con~

tinuous and

by ()& (=107 £(8, X, 000, X p)sign Xy E By (8, X 4000, X ) (6)

o
. n
where by : [0,e]—>R, eanda hy: [0,2a7 x R °>~»R_ are continuous

functions., Then the problem (1),(2) is solvable.
In the boundary conditions have the form

uli-t) (o) = o, u(j'”(a') =0 (i=1,..0yn,; J=1,.00,n-n,) @,)

then it is possible to prove the existence theorem containing the
case when the function f:]O,a[ x R%*R has nonintegrable singula-
rities when t=0 end t=a . In this case the solution of the
problem (1),(2,) will be sought in the class of n-times conti-
nuously differentiable functions u:J0,a[~>R® eaad under

uli=1) (0) end u 3-1)(a) we will mean

m w1 (0)  ang 1w w81 (o).

t-»0, t->a_

Theorem 2, Let the function £:J0,afx R™»R be con-
tinuous and satisfy the inequalities (6) where h: ]O,af'*R,
is continuous end bounded, h,: ]O,af—’R+ is continuous, besides

ir n=2n, + 1 for any ZER, we have

n n_-1/2
supf(a-t) °n, (¢, (a-t) ©

1/2
SIRCORE ST L AR Xnl £
7} < + % . Then the problem (1),(2) is solveble.
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For the problem on the infinite interval, i. e. problem (1),

(3) thke following statements hold true.

Theorem 3. Let the function f: R, x RL>R be conti-
nuous and satisfy the inequalities (5) where h :R,—>R, and
n
hZ:R+ x R °—->R+ are continuous functions and

+00

n-n 1/2
S t °['1+(2n°+1-n)1n (I+t)] hl(t.)dt<+°° .
o

Then the problem (1),(3) is solvable.

Theorem 4, Lot the function f be continuous and sa-

tisfy the inequelities
-1

N n-
h ()Xl = ()£(=1) ° £lt, X),000,X ) signX, =

hz(t,’:11,...,xno) where A 21, n :R—R, (k=0,1) and
hz:R* x R 9—>R+ ere continuous functions,

+
S tn'l/2h1(t)dt < +0Q and for a certain &€ >0
o
A-1
n- S5— (1+ &)
lim t ho(t) = +09 .
4~ 400

Then the problem (1),(3) hes a solution u such that

un ¢'/2 Pl () =0 (1=0,1,..0 0010, (7)
1 =P+o0

Let the function f:R, x R%“>R be continuous end £(t,0,...0)=
= 0., A solution u of the equation (1) defined in a certein
neighborhood of +90 is said tobea pr oper one if for any
sufficiently lesrge t

aup{]u(s)l : té‘s(“"’} >o.

A proper solution is seid tobeen oscdillatory oneif

it hes & sequence of zeros tending to +R,
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By means of Theorems 3 end 4 the conditions of the existence
of proper oscillatory solutions of the equation (1) end of o
n, - dimensional femily of vanishing et the infinity solutions of
the equation (4) eare derived. By this the answer is given to

those two questions which were posed above.
For any A# 1 set

n
/1(n,))=n-1+1—-'442'1—l—° (A-1) for.- A >t ,

(n,A) =n-n_+ (n~1)A for ALK
Ve 0 o

Theorem 5.Let ngé4 and let the function f sa-
tisfy the inequalities

n_-1

ne
R (WX DE(-1) (4, X ,000,X n)sign X, £ n(t, X, ,...,xno)

n
where @ :R-R,,h :R,~>R, end h:R, x R °—>R_ are continuous
functions

W (X)>0 for X# 0, lim inf 94%‘-1>0 YR
Kl —evoo x|

and

+ 0
S t/"(n,k) ho(t)dt = + 9 .
1

Let in eddition the Cauchy problem for the equation (1) with
the zero initial conditions have only the zero solution., Then
there exists a continuum of proper oscillatory solutions of this
equation.
Corollary.If n34, A>1
+

-1

L)
(1 )n-no h(t)ZO for tE€R, ax;dg t"(n'z)]h(t)‘dt = +00 |
. ]

i then the equation (5) has a continuum of proper oscillatory so-
! lutions.

Consider the equation (4) with & continuous coefficient
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h: R, >R .
n .
Denote by Uho the set of all solutions of this equation
satisfying the condition
¥ (n) 2
S['u °7(1)] " at<+o0 i
o
n—no-1
Theorem 6. If (-1) h(t)20 for tE€R, , then
n
Uh° is a n, - dimensional linear space. Moreover for any toe R,
n
end c;€R (i-1, ..., nol there exists the unique ue€ Uh°

setisfying the initiel conditions

u(i-]) (to) = ci (i?-" es oy nO) .

Theorem 7. If
-1

n-
lim (=1) ©  t® n(t) = +®
t~>+v0

n
then Uho is e n, - dimensionel linear spece whose arbitrery ele-

ment setisfies the conditions (7) .
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