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APPROXIMATION OF CONTACT PROBLEMS WITH FRICTION 

Jaroslav Haslinger 
V 

Prague, CSSR 

1. Introduction 

A great number of technical problems lead to the study of the 
behaviour of complicated structures, composed of two or more defor-
mable bodies in mutual contact. Contact problems without frictiori 
have been studied by many authors from mathematical as well as com­
putational point of view. Here, we describe the approximation of the 
simplest model, involving friction, namely model "with a given fric­
tion", definition of which is given in the next section. For the sake 
of simplicity we restrict ourselves to the plane case only, when an 
elastic body is unilateraly supported by a rigid foundation. All 
these results can be very easy extended to the case of two (or more) 
elastic bodies in contact. A detailed analysis of all results, pre­
sented below, can be found in [2]. The approximation of our problem 
is based on the so called reciprocal variational formulation. The use 
of some other variational formulations for the approximation of con­
tact problems with friction is studied in [3, 4]. 

2. Setting of the problem 

Let an elastic body be represented by a domain -Qc R , the Lip-
schitz boundary of which is decomposed into two non-empty parts Pu 

and r... A displacement field u « (u.|, u2) is said to be a classical 
solution of the contact problem with a given friction, if 

(2.1) --̂ -i-1 + Fj « 0, i - 1,2 in il, 

i.e. u is in the equilibrium state with body forces F - (Fjf F2) and 
it satisfies: 

homogeneous boundary conditions 

(2.2) Ui - 0, i - 1,2 on Tu, 

unilateral conditions 

(2.3) un - u.n -- 0, Tn(u) » ^ijt
u-,ninj * °» u n Tn^ u ) " ° on *V 
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friction conditions 

NTt(u)l « g, Tt(u) * ̂  (11)11^, 
(2.4) I if |Tt(u)(x)| < g(x)«»>ut(x) « Ujtj « 0, 

I if ITt(u)(x)| « g(x) 3 ^ - 0 , Tt(u)(x) « -Au(x), x 6 1"̂ . 

T ., are components of the stress tensort t related to the strain 
tensor £ by means of linear Hooke's law, n and t denote the unit 
normal and tangential vector to c)Jl. 

In order to give the variational formulation of the problem in 
question, we introduce a Hilbert space 

V -{v « (v v v2)6 (H
1(JL))2| Vi - 0, i - 1,2, on ^ } 

and its closed convex subset 

K »{v6 V | vn * 0 on i^}. 

Finally denote by T- the functional of total potential energy, given by 

^(v) - nrij(v),eij(v))0 • f g|vt|ds - (Fi, V i ) 0 , 

where ( , ) Q denotes L
2-scalar product, F€(L2(Jl)) , gC L 0 0 ^ ) - , 

g - 0. 

Primal variational formulation is defined as the problem of 
finding a minimiser u of ̂  over K: 

(S>p) u € K: ^(u) « *J(v) V v € K. 

It is well-known that there exists a unique solution u of (5*) 
(see [1]). 

Now, let us introduce the following quadratic functional: 

f 9*1»A2J " 1/2</^1»
 Gfa»/*z)**> * 1/2</*2,

 GCM»/^2)#t^ * 
+ <fv G(F).n> • </*2, G(F).t> , 

where (/*.,, y*.-,) € (H"1^2(^.))2, < f > denotes the duality pairing bet­
ween H-1/2(rK) and H

1/2(rK) and G: V
1 -* V is the Green's operator, 

associated with the bilinear form (^(v), ̂ £j( z)) 0
 an<* tnc space V. 

By reciprocal variational formulation we call the problem of fin­
ding A - (A 1 , A 2 ) e A l x A 2 > satisfying 

(5>r) jCAp^) « f C^,^2) Y 9h^ 2)
t f A1 x A2» 
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where 

A , B H-1/2crK, -fz-^H-V^r,,) I VA., vn> i 0 V v 6 K], 

A2-(r-2eL2(rK) | ! r 2 l - g o n r K l . 

The relation between (?) and (P) is given by 

Theorem 2.1. There exists a unique solution of (JP ) . Moreover 

*1 " Tn(u)> X2 * Tt ( u )' 

where u € K is the solution of (J> ). 

3. Approximation of the reciprocal variational formulation 

Let XL cr R be a polygonal domain and[Jnj, h —> 0+ a regular 

family of triangulations of XL , which is consistent with the decompo­
sition of ®Xl into T u and r~. By Vn we denote the finite-dijnensional 

subspace of V, containing all piecewise linear functions on T.. 
Lett^uJ be another family of partitions of I"1-., nodes of which, 

denoted by b . , , . . . , b mrm » don't coincide with boundary nodes of 3*n, in 

general. A ^ and A 2 H are defined as follows: 

A1H -fr-H61-2^' A - 1 H € W W ' AlH ' ° Vi) ' 
A2H •{r-2HeL2(rK)'/-2H6Po(biVl)'lA2Hl " «* V "1 . 

where/*-£-, • /^ .mlb b * J " 1>2» ^o^i^i*^ d e n o t e s t n e s e t o f a 1 1 

constant functions on b ^ . - ^ and g is the mean value of g on b i b i + . J. 

As the explicit form of G, appearing in the definition of J is not 

known, in general, G must be approximated. Here, we describe one of 

the possible approximations. Let An be the matrix of rigidity, re­

lated to the bilinear form (C^* (v) , £.-* (z))Q and to Vh. The approxi­

mation Gn of G is now defined as the mapping of Vn into Vn, represen­

ted by the inverse of An. So we are led to the following definition: 

Definition 3.1. By the approximation of the reciprocal variational 

formulation t>f the contact problem with a given friction we mean the 

problem of finding (^JH'^2^ 6 ^ 1 H X ^2H* s a t i s f v i n8 

tfPhH *h^lH' X2H) * h(frn>Fld * ^ H ' / ^ e A1H * A 2H' 

.3 ftcteüu £anadi££ 129 



where *$ ^ is obtained from f by replacing G by G^. The analysis of the 

relation between CX1H»^2H^
 a n d ^1»^2^ is 8 i v e n in [2]. 
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