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NUMERICAL APPROXIMATION OF A NONLINEAR STURM-LIOUVILLE 

PROBLEM ON AN INFINITE INTERVAL 

J. Descloux, J. Rappaz 

Lausanne, Switzerland 

Let V = H0( F +) = {f: F + -K\ f.f'e L ( F + ) , f(o) = o} be with norm 

i
co 2 2 l 

(|f| + lf' I)) • For (*»") 6 F x V , we consider the equation 

- uM(t) + a ( t )u( t ) + 3( t )e(u( t ) )u 2 ( t ) + xu(t) = o , t e F + , (1) 

1 2 

where aeL°° ( F+) OL ( F + ) , 3 6L°°( F+) DL ( F+) , eeC p ( F ) , p > 4. We are inte­

rested by the approximation of solution branches of (1) in the neighborhood 

of a solution (x0 , u0) of (1). By Naimark [4] , p 301, u0 4 o implies that x0 > o; 

consequently, in the, ioWwoing we t>kaJUL KQAtnict ouAAeive* to positive, value* o& 

Let {Yh>h be a family of finite-dimensional subspaces of V, dense in the limit in 

V when h tends to zero. The Galerkin approximation of (1) consists in finding 

( x, u) e F x V. such that 

f {u ' ( t ) w'( t) + (a( t )u( t ) + 3 ( t ) e ( u ( t ) ) u " ( t ) + xu(t)) w(t)} dt = o V weVh .(2) 

For h > o, let N = N(h) be the integer part of h ' where 6 > 1 is some given 

number; as a particular choise of Vh, we can consider 

Vh = {v e V|v is piecewise linear with respect to the mesh {in}, v(t) = o for 

t >. N h } ; (3) 

by using furthermore the numerical formula of quadrature I w(t) ? h I w(ih), 

Problem (2) becomes equivalent to the classical difference scheme : 1 

u^- - 2u. + u1+- - h (a(ih) + 3(ih)e (u^ u. + x)u. = o i = 1,2...N-1, (4) 

where u. = u(ih), u0 * uN = o. 

Consider the following auxiliary eigenvalue problem : find (u,<t>)e F x V such that 

- *M(t) + a(t)4>(t) + 3(t)(e'(u0(t))u0(t) + 2e(u0(t)) uoftJJ^t) + ^ ( t ) = 

p*(t) , t 6 F + ; (5) 

since x0 > o , by [2] or [4] , then u * o either belongs to the resolvent set 

or is an isolated eigenvalue of multiplicity 1 of the operator L, where L<j> denotes 

the left member of (5). 
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In the following we shall consider branches of solutions of (1) or (2) of the form 

(X, u(X)) e K x V or of the form ( x ( r j , u ( 0 ) 6 F x V ; u(
k
) will then denote 

the k - th derivative with respect to x or s. 

Thzjofim 1. (Regular point) We suppose that y = o is not an eigenvalue of (5). 

Then, in a neighborhood of (x
0
, u

0
) , Problem (1) possesses an unique branch of so­

lutions which can be parametrized in the form (X, u(X)), |x-x
0
| < e ; for h 

small enough, Problem (2) possesses a corresponding unique branch of solutions 

which can be parametrized in the form (x, u.(x)), |x-x
0
| < e ; u(x) and

 u

h
(x) 

are of class C
p
 and for o * k < p-1, |x - x

0
1 < e, we have the error estimate : 

ll«
(k)
(x) - u

( k )
 (X) |U< c l inf ||u

(e)
(x) - v || 

п
 e=o vЄV

h 

where c is independent of h and x. 

(6) 

ThojoKw 2. (Turning point). We suppose that y = o is an eigenvalue of (5) with 

eigenvector <|>
0
 6 V and that u

0
 • <j>

0
 t o. Then, in a neighborhood of (X

0
, u

0
 ), 

Problem 1 possesses an unique Branch of solutions which can be parametrized in the 

form (X(£), u(£)), Ul < e » where X(rJ and u(s) are Cp mappingswith x(o) = X0, 

u(o) = u0, x*(o) = o, u'(o) / o. Suppose furthermore that X"(o) j- o. For h small 

enough, Problem (2) possesses a corresponding unique branch of solution which can 

be parametrized in the form (x.(c), u.(s)),, Ul < e; x n U )
 an<1 u

n ( 0 aire of class 

Cp and there exists an unique £n* |cn| < e such that \l {£.) = o ; for 

o <vk < p-1 and |c| < e, we have the error estimates: 

|x(k)(5) - X ( k ) ( C ) | + ||u(k)(5) - u
( k ) ( 5 ) | | s c l 1nf|| u ( e )( 5) - v||, (7) 

n " e=o veVh 

Uo " ^ h ( C h ) U c { Inf ||*o - v | | 2 + 1nf|| u0 - v||
2}. (8) 

vevh vevh 

where c is independent of h and £. 

Thwiw 3. (Bifurcation from the trivial branch). We suppose that u0 = o and 

y = o is an eigenvalue of (5) with eigenvector <|>0 6 V . Then, in the neighbor­

hood of (x0, o), Problem (1) possesses an unique non-trivial branch of solutions 

which can be parametrized in the form (X(0, UU))» Ul K e where x(s) and u(c) 
n.»9 

are Cp" mappings with x(o) = x0, u(o) = o,u'(o) i o. For h small enough, 

Problem (2) possesses a corresponding unique non-trivial branch of solutions which 

can be parametrized in the form (xn(£), un(£))* |c| < e where X n U )
 a nd u

n(C)
 are 

Cp" mappings with un(o) = o. For o < k < p-3, we have the error estimates : 
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sup {|x(k)(e) - x<k>(-)| • l|u (k)(c) - u (k )(c)||> í c I sup (inf||uC (f,)-v||). 
U N o h h - ••• e ; 0 |ç|<є0"vev. 

(9) 

RemoAk 1. Theorems 1, 2 and 3 can be proven by applying the results of [31 which 

generalize in several directions those of [11. Use of [11 would suppose a property 

of compactness which is missing in our example : if L denotes the operator defined 

by the left member of (5), the inverse L ,when it exists,is non compact since (1) is 

considered on an infinite interval. 

Remark 2. Due to properties of exponential decay of solutions of (1) when t -• « 

(see [41), it is easy to verify that for V
h
 given by (3), the right members of 

(6), (7) and (9) are 0(h) whereas the right member of (8) is 0(h
2
). By using the 

standard arguments relative to the introduction of numerical integration in Galer-

kin methods, it is possible to verify that the same estimates are valid for the 

method defined by (4), if a(t) and e(t) are sufficiently regular. 
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