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NEW FUNCTIONAL SPACES AND LINEAR NONSTATIONARY 

PROBLEMS OF MATHEMATICAL PHYSICS 

J.Brilla 

Bratislava,CSSR 

1.Introduction 

The range of physical problems in which the time dimension has 

to be considered is great. Very often it is usual to consider the 

time dependent problems separately, classifying them according to the 

mathematical structure as parabolic and hyperbolic. We shall deal 

with equations the structure of which is more complicated and analyse 

common approach to their theoretical and numerical analysis. 

Consider differential equations of the form 

n k s k 
I A, D* u + Z b, D* u = f*, in Q x R+ (1.1) 
k=0 K z k=0 K t 

where A, are time independent elliptic operators, b, are non -
k 3 it-negative constants, D£ = /3t , s = n + l or s = n + 2 . 

According to n and s the equation (1.1) can be parabolic or 

hyperbolic and includes the governing equations of quasistatic and 

dynamic problems of viscoelastic plates and shallow shells. 

We assume a bounded domain n in R with a smooth boundary 

3 a and consider Dirichlet boundary conditions and non-homogeneous 

initial conditions. 

Simultaneously we can consider integro-differential equations 

t 9 
/ A ( t - T ) u (T) dT + pD^u = f* in fl * R+ (1.2) 
0 t 

with corresponding boundary and initial conditions, where A is an 

elliptic operator with respect to space variables. 

According to the form of the elliptic operator A the equation 

(1.2) can be the governing equation of quasistatic problems for 

viscoelastic plates and shallow shells of materials of the integral 

type for P = 1 and of dynamic problems for p / 1. 

64 



2•Variational formulation 

We assume that the right-hand sides of (1.1) and (1.2) belong 

to the weighted Hilbert space of function valued in Sobolev spaces 

IivjCR , H*
8
, ?•) endowed with the norm 

II fll
 L ( R

+ grn
 o )
 * (/ II f(t)ll

2

{
p e""

2ot
 d t )

1 / 2
 • (2.1) 

Then applying Laplace transform to (1.1) and (1.2) we arrive 
at 

and 

n
 k ~

 s
 k - <* 

г p* A. u + E p* b . u = ï (2.2) 
k*0 к

 k=0 * 

A(p) u + pp
2
u « ¥ , (2.3) 

where tildes denote Laplace transforms and f includes also initial 
conditions. 

In order to arrive at a variational formulation we -introduce 
complex Sobolev spaces of functions Vpitotp ) which are.pararaetri-
cally dependent on the transform parameter p and analytic in the 
right-hand halfplane p « {p I Re p > a 2 0} with the scalar product 

(u, v ) m ' / E D a u Dtt v dft (2.4) 
0 lalsm . 

and the norm 

II tt II = ( / Z ID° u l 2 d n ) 1 / 2 ( 2 . 5 ) 
m ft Ia|<ra 

a beeing a multiindex. 

Now we define the bilinear form for u,v c Hg(a,p0), 

B [ïï, v] = E pk(A. u, v) + l b. pk(ÏÏ, v ) . 
k=0 к

 k=0
 к 

(2.6) 

Since A. are positive definite operators and b. non-negative 

constants, for positive real values of . p B[u,v] is a positive 

definite bilinear form. Then for real values of p Laplace transforms 

of u and ¥ assume real values and one can construct the functio­
nal of generalized (in the sense of Laplace transform) potential 
energy 
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2 V (u) = B [u,u] - 2 (¥,u). (2.7) 

Now we can formulate the following variational theorems 

Theorem 1. For ? c L2(0,p*) there exists a unique weak 
(generalized) solution u of (2.2) which for positive values of p 
minimizes the functional of the generalized potential energy (2.7) 
and conversely the element, which for positive values of p minimizes 
(2.7), fulfills (2.2). The solution for other values of p is given 
by the analytic continuation and the solution of (1.1) by inverse 
Laplace transform. 

Further one can prove that (2.6) fulfills the conditions of the 
Lax - Milgram theorem for p e p «-{**}« 

31 New functional spaces 

When we want to derive a priori estimates it is necessary to 
introduce new functional spaces. We shall consider the spaces 
Km,r(n,0) of functions parametrically dependent on the transform 
parameter p and analytic in p with the norm 

»*"lMCQ.a> S C > o « « * (»1 +iP2> »2H» * 
1 (3.1) 

+ (1 + lpl2)r II? (p1 • ip2)ll
2
Ho> d p 2 )

1 / 2 

where P = p, + ip2* For r = 0 we arrive at Hardy spaces of 
functions valued in Sobolev spaces. 

Simultaneously we introduce weigthed anisotropic Sobolev spaces 
endowed with the norm 

" f " H»'5 <a,R
+,a> " < ] » f U 2 ^ e- 2 o tdt • 

»° ° (3.2) 

• II f . - t . l V ( R + f Ho ( a ) )>
1 / 2 

ï we assume that 

Эf1' (x,0) 
= 0, 

Ъt* 
= 0, k -- 0, 1, ..., r -1. (3.3) 

Then we can prove the following theorem. 

Theorem 2. Laplace transform is an isomorphic mapping of 
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Hm'l (Q,R+,a) on Km'r (ft,a). 

When we want to decide what spaces are convenient for an analy­
sis of a time dependent problem, it is necessary to analyse proper­
ties of eigenvalues. In dealing with this analysis we restrict 
ourselves to the differential equation 

D2 U + A1 Dt u + AQ u = f (3.4) 

with Dirichlet boundary conditions and following initial conditions 

u (x,0) -u Q , Dt u(x,0) s u1# (3.5) 

Then the Laplace transform yields 

(p2 + A1 p + AQ) u = ?
 + Ai UJ + p u0 + U V (3.0 

Firstly we shall consider the case 

Ax = K AQ. (3.7) 

Denoting X eigenvalues of AQ and X eigenfunctions of A^ 
multiplying scalarly (3.6) by XR we arrive at 

[ p2 +(rp + D X n ] un = ?n + (KXn • p) u0n+ uln. (3.8) 

Then 
1 

u « E 5 [? + (K Xn + p)uftn + u. 1. (3.9) 
n-1 p2+(KP+l)Xn

 n n 0n lni 

Now eigenvalues of the considered non-selfadjoint problem are 
the roots of the equations 

P2 • *KP + K s 0* (3.10) 
n n 

what gives 

Pnl 7 * * - Xn ll * (1 2)1/21- ( 3* U ) 

nl,2 2 n X K 2 

n 
From the point of view of space and convergence analysis it is 

important to find limit points of the spectrum (3.11). He have 

S i --»-0<V (3.12) 
and 

67 



l i m P 0 = . (3.12) 
n->» n2 K 

Thus the spectrum of the considered non-selfadjoint problem has 

a finite limit point and an infinite one. 

The similar result can be proved in the case of general symme­

tric elliptic operators A and A. when we take into account their 

asymptotic properties. 

Then from an analysis of (3.9) it is obvious that the choice 

of spaces Km#r(ft,o) and tf^'j^fixRyo) depends on the asymptotic 

properties of eigenvalues of the problem for n=» and not on orders 

of derivatives. [l-2]. 

Now we can formulate and prove: 

Theorem 3. Let 1 c K2(r"1)m,r"1(0»o> r>0 and uQ=u1=0. 

Then the solution of (3.6) satisfies u e K rm'r(tt,o> and there 

exists a constant C such that 

" S l ,___.r- C «*»_2(_-l)_,r-l. ( 3- 1 3 ) 

Then using the isomorphism of spaces Kni/r(n,o) and 

tf^UxR,**) we have. 

Theorem 4. Let f e H 2 ( r~ 1 ) m' J^CaxRja) #jr-_0,uA=u- sO.Then the 

, u u i 

solution of (3.4) satisfies u t H2(r"1)mrr""1(f2xR,+o) and there exists 

a constant C such that 

l | u " H 2 n n , r -
C " f'« 2(r-l)*,r-1

 ( 3' 1 4 ) 

- -0 H ,0 

When f does not belong to K m ' r ( . . , - ) , we apply Hardy spaces 

"-(-"•( . . fP*)) of HBl(Q,p*) valued functions parametrically depen-* o . o 

dent on p and analytic in p with the norm [3-4] 

11*11 _ . = (_u?_ ; I I ? ( P , + i p - ) i i 2 _ dP„>1 / 2 . 

Then we haves 

™ + " ( n U L / M -(p, + ip,)ll2_ dp,) 1 / 2. (3.15) 
«-(_"(0,p*)) P l > a — X 2 Hm 2 

Theorem 5. Laplace transform is an isometric isomorphic mapping 

of L2(R
+,tf\o) on H2(H

m(0,p*>). 

Now analysing (3.9) we can formulate and prove. 
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Theorem 6. Let 1 e H 2(H~
m(ft,p*)), u Q c H^fi) and 

u e H (H^ (fi,p )) and there exists a constant C such that 

II ÏÏII m * C Пlïll 
/^(H^Чo^p*)) H

2
(н""

m
(П,p

+
)) 

+ 

(3.16) 
+ ,! u

n
! l
 m

 + M u
i

1 1
 -« >• 0

 H
m
( n )

 l
 H"

m
(o) 

Then applying the theorem 5 we arrive at. 

„+
 T
,-m, 

Theorem 7. Let f c L
2
(R

+
,H~

m
(Q)), u

Q
 c H

m
(ft) and ^ «: H~

m
(al 

the solution u of (3.4) satis 

there exists a constant C such that 

Then the solution u of (3.4) satisfies u e L
2
(R

+
,H

m
(fl)) and 

•I
 u
" + m < C {II fll . _

m
 + 

L
2
(R

+
,H

m
(0)) L

2
( R \ H

 m
(n)) 

(3.17) 
+ II u

n
N m + II u , II

 m
 }. 

0
 H^n)

 l
 H""

m
(fi) 

4. Finite element solution 

We look for the solution in the form 

n 
u = Z a ( ) * (x), (4.1) 
11
 «=l * 

where {4> }!? are global basis functions depending only on space 

variables and the coefficients a (p) are functions of the transform 
a

 c 

parameter. We consider global finite element basis functions, which 

are piece wise polynomials in space variables. Since the set {<f>
a
}^ 

is linearly independent, it forms over the fields of functions of p 

analytic in p* the basis of a n-dimensional subspace
 s

n
^

f t
* P o ^

 o f 

- ^ ( l ^ p * ) . In the same we may introduce S*'
m
(fl,p*) families of fi­

nite element subspaces [5,6] in which basis functions are polyno­

mials in space variables of degree k + 1 > m and form a dosed 

subspaces of H
m
(ft,p ). 

Inserting (4.1) into (2.7) and applying the usual variational 

procedure we arrive at 

w £ ? . BEV*B1 " a- V = °* (4-2) 

(3 <••--* 
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T h U S n * . B
( P ) ( l f ' V 

a ( p ) = E -S-J? 2... ( 4 # 3 ) 

a B=l A(p) 

where F Q i s t h e a d j o i n t m a t r i x and 

A(p) = I B [<J>
a.* a>l < 4 . 4 ) 

is the determinant of the matrix of the system. It is obvious that 

? D(p) / A(p) is a rational function of p. Thus the inverse tran-
ap 

sform can be achieved by the method of decomposition into partial 

fractions. 

When dealing with the error estimation of this generalization 

of the finite element method applying the approach and results of 

[3-4] we can prove. 

Theorem 7. Let S (0,p+) belongs to S*'m(0,p+) where 

k + 1 > m and let e = u -ux, where u is the exact solution of 

(3.8) with uQ = u. = 0 and u* is its finite element approxima­

tion, is the aproximation error. Then there exists a constant C 

independent of u, h and p, such that for sufficiently small h, 

a regular refinement and for 1 c K m' s(0,a), s > 1 

11 ell m 1 / 9 < C h v II fll - , / . _ , > - fi_- ( 4 . 5 ) 
K m ' 1 / 2 ( 0 , o ) K 2 ( S 1 ) m ' S X ( 0 , a ) 

where v = min [k + 1 - m, ( 2 s - l ) m]. 
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