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IGNITION FOR A GASEOUS THERMAL REACTION 

J. W. Bebernes 

Boulder, Colorado USA 

1. The ignition model for a reactive gas. The ignition period of a thermal event 

for a perfect compressible reactive gas as derived by D. Kassoy and J. Poland [3] 

can be described by the following model 
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where Q C B is a bounded open container, G(x,t) i s the temperature pertur­

bation of the gas, A i s the Frank-Kamenetski parameter, <y 2fc 1 i s the gas 

constant, and 9 (x) Is the init ial temperature perturbation. 

For a reactive gas in a bounded container, the associated thermal event 

can be violent or mild. In the former case when explosion occurs, the event is 

supercritical or explosive. In the latter case when there Is no dramatic event, 

the reactive event i s subcrltlcal. The questions we wish to answer are the 

following. 1) Can we describe the time-history of e(x,t) T 2) Can we 

distinguish between explosive and nonexploslve events as the parameters A and 

Y vary ? 

2. Results for a solid fuel. For a solid fuel In a bounded container, the 

above questions were answered in [ 1 ] . Formally when -y • 1 IBVP (l)-(2) 

reduces to the classical ignition model for a solid fuel. 

(3) e
t
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(2) e(x,o) - o , x e n » e(x,t) - o . x ^ a o , t > o 

The associated steady state problem Is: 

(4) - &f - 6e* , x € 0 

(5) #(x) - 0 , x € o Q 

We now summarize the results for IBVP (3)-(2) and BVP (4)-(5). 

A] Given any bounded domain Q C K , there exists A--r > 0 such that: 

a) for 0 < A < 6— , BVP (4)-(5) has at least one positive solution, and 

b) for A > ft__ , no solution exists. The classical definition of crlticallty 

is based on this number A—- • Another question arises. What does A*,- nave 

to do with IBVP (3)-(2) • B] For any A > 0 , IBVP (3)-(2) has a unique 

solution e(x,t) on Q x [0,t*) , t* > 1/A , with 0 * e(x,t) sflnd-ot)"1 , 
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(x,t)€ Q x [0, 1/6). C] For any 66(0,6--!-] , IBVP (3)-(2) has a unique 

solution e(x,t) on n x [0,OD) with 0 « e(x,t) * 5(x) where 8 is the minimal 

solution of BVP (4)-(5). D] For 6 > 6-^ » IBVP (3)-(2) has a unique 

solution e(x,t) on (T x [0,t*) , 1/6 * t * • » wlth •UP- e(x,t) ̂  as 

x€n 
t -» t_ • Thus for 6 > 6™- the temperature 6 becomes unbounded as t -t» t— and 

^ if 

thermal runaway occurs at t . Can we determine t ? E] Let e be the 
solution of IBVP (3)-(2) on Q x [o,T) . Let f(t) satisfy 

(6) 1 - 6e* - Xx f • f(0) - 0 on [0,T) where Xj is the first 

eigenvalue of: 

(7) - Af - Xf » x € 0 

(8) f(x) - 0 , x e d Q 

Then sup Q(x,t) 2 $(t) on [0,T) . F] The solution s(t) of IVP(6) exists 
x^O 

on [0,T) for any 6 > 0 where 

(9) T-J dг 
° 8e

8
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 Xl
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T < • tf and only if 6 >
 X
l/e 2 6* , and lim «(t) - +• if 6 > 6* . 

t*T-
-v 

6] Let 6 > 6 • Then the solution 6 (x,t) of IBVP (3)-{2) exists on 

0 x [0,t*) with 

(10) l / 6 ^ t * | T s •• dg < * 

and llm^ [sup e(x,t)] - + • . Thus, for 6 > 6 a - j > 6 F R , the 
t+t-

% 

thermal event for a solid fuel Is explosive since e(x,t) becomes unbounded at 

t and t can be estimated by the Inequality (10). 

3. Results for a reactive gas. The Implicit integro-partial differential equation 

(1) is certainly more complicated than the Ignition model (3) for a solid fuel. 

This complication is due to the gas motion caused by the phenomena of thermal 

expansion which leads to the Integral term involving the time deviative of the 

temperature perturbation. The results of this section are joint with A. 

Bressan and will appear In detail in [2]. The first step in dealing with IBVP 

(l)-(2) is to put the problem in a more tractable equivalent form. 

Theorem 1. IBVP (l)-(2) Is equivalent to IBVP (ll)-(2) and to IBVP (12)-(2) 

where (11) e
fc
 - *e - 6«
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where M i s the exterior normal to ;-, Q and dCT Is the element of surface area 

on ^ o • The equivalent forms follow by integrating (1) over Q to get (11) . 

(12) fol lows by the divergence theorem. The next two theorems are obtained using 

semigroup theory and invariance re su l t s for an abstract perturbation of a l inear 

problem associated with the l inear part of (12) . 

Theorem 2 . For any 6 > 0 , y k 1 , and any e o € L2(ft), *g? 0
O*X* < " ' 

IBVP ( l ) - ( 2 ) has a unique solut ion e ( x , t ) on o x [0 f ( J) , a > 0 , where e i t h e r 

a < -K» and lim[sup e ( x , t ) ] « + » . 

Let 0 - B s {x: H x || < 1} c » n and se t BQ(x) w 0 . 

Theorem 3. For 6 > 0 , y * 1 , the solution 9(x,t) of IBVP (l)-(2) is non-

negative, radially symmetric, and nondecreaslng on [0,<j) • 

As for a solid fuel, we can mathematically distinguish between explosive and non-

explosive events by considering the following comparison equations: 

(13) q>fc - A*- 6# + $=fa 6fe*dy 

0. 

<3) x t " i - X * oe
v 

(4) - A x - fie* 

Theorem 4. For 5 > 0 , y a 1 , the solution e(x,t) of IBVP (l)-(2) satisfies 

X(x»t>) < 6(x,t) < <p(x,t) for all x€ 0 and all t 2 0 on their common interval of 

existence where y is the solution of IBVP (3)-(2) and cp is the solution of 

IBVP (13)-(2). 

Since for B c lP , 6 > 6* - Xl/e > 6 ^ . the solution X of IBVP (3)-(2) 

•& ic fe 

blows up In finite time t , ve have that O < t for 6 > 6 and 9(x,t) 

blows up as t -* or. . Physically, this means that the temperature for an ideal 

gas is always greater than that for a solid in identical bounded containers and 

hence a gas explodes sooner than a solid fuel. Finally, ve have 

Theorem 5. If X is any solution of BVP (4)-(5) then £(x,t) < X(x) on 

Q x [0,e*) where 6 Is the solution of IBVP (l)-(2). 
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