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NECESSARY CONDITIONS FOR THE MULTIPLE 

INTEGRAL PROBLEM AND ELLIPTIC 

VARIATIONAL INEQUALITIES 

Viorel Barbu 

University of Iasi, Romania 

We are here concerned with the optimization problem 

(1) minM L(y(x), r/y(x))dx; y€ K \ 

where K » Jy€ W^ pCft); y(x)} f (x) a.e.x€-ilj (the case 

K « W~j,p(jC}-) is allowed ). Here XL is a bounded, open subset of 

R11 with a sufficiently smooth boundary V and *>f€ C(.flD is & 

given function such that N / £ o on I • The integrand 

LiRXR11 — > R is assumed to satisfy the condition: 

(i) L(y,z)^o for all (y,z)€ RX Rn and for some positive M. 

(2) L(y+u,z+v).4exp M( |(u,v)| (L(y,z)+M|(u,v)| (l+|(y,z)| )) 

for all (y,z) and (u,v) £n RX tf1. 

Given a locally Lipechitzian funotion v-0 :Rm —->R we 

shall denote by pu> the gradient of \f and by DV> the mapping 

(3) D^f(y) . f \ f \ convr<f(S(y,5")\N) 
3 J>o V(N)-o J 

where V is the Lebesgue measure and S(y,o) is the ball of 

radius i and oenter y. 

I f ^ is the generalized gradient in the sense of Clarke 

of ^f then as is readily seen we have: D^PCo^p. 

THEOREM 1 Assume that condition (i) holds. If 

y*ewJ»p(IL)f l£p<:©o is optimal in problem (1) then there 

exists a function y% Q L^CfLlR11) and a Radon measure U. on O 

ҙo 



auoh that divy - ^ ^ L 1 ^ ! ) and 

(4) (div^ - j * ^ ) ^ DL(y*f py*) a.e. on Jl 

(5) M^o on^L;fi» o on int ̂ x€il;y*(x)> Y ^ ) ] . 

The special case K « Vr,p(j(l) of this theorem has been proved 

via a minimax theorem by Clarke [3]» 

We give a brief outline of the proof. The detailed proof 

may be found in [ 2]• For A > o consider the problem 

(6) minj J(LA(yf py)+*>(xfy))dx+ } | yrjrl&y ew^
p(IL)J 

wherein l|.llm is the norm of Hm(XL)f m>n+2, x*(xfy) » 

(2>)-1|(y-Y(x))-|2 and 

L*(yf2.) - 1 L(y-Ae,z->T)J(M)dedT 

( P is a mollifier on fP )• Let y. be optimal in problem (6). 

Sinoe L* and x^ are differentiable it follows that there 

exists Y 6 L̂ -CCLlR11) ouch that divy € LX(il)+H"m(jfL) and 

( 7 > > l>" r2L>(y>» ^ V ' d l v 1 ; F i L > ( v pyA)+*v*»yA >+A(y>V) 

where PL • ( P-jL f PgL ) and A i s the canonical isomorphism of 

I^UL) o n t o H ^ O L ) . 

Next i t follows that y - y* —-> o strongly in HJJCIL) and 

by (2) we deduce that [PL (y f PjOJ i s & weakly compact 

subset of L (XLiH?1 ) • Thus we may assume that 

^ > \ weakly in I^ClLlHr1) 

^^(y^ ,?£ ) — > $ weakly in L^il). 

Then arguing as in the proof of Lemma 3 in til we find that 

(>(x)f^(x))GDL(y*(x)f Fy*(x)) a.e. x4.fl. Finally, there is 

\klA (SI) such that ^ ( x , ^ ) — > f weakly in L^-QD+H^iZ). 

Sinoe *>(xfy^)« "^ (yi -YW)"-t° a#e# x€iL we may infer 
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that it is a negative measure on £L . Then letting X tend to 

aero in (7) we find (4) as claimed. 

We continue with the following consequence of Theorem 1» 

THEOREM 2 In Theorem 1 assume in addition that L(yt.) is 

convex for every yg R and for each k>o there exists 0. such that 

(9) L(y,z)>k|zlp~Clylp-Ck for al l (yfz)€-RXRn 

where C is independent of ktyfz and l^p^oo o Then there exist 

the functions y*£ K, >? € L (il iR11) and a Radon measure u on SL 

such that divig -\i 6 LX(XI) and satisfying Eqs. (4)f (5)* 

To prove the theorem consider on the space W:**p(.fl-) the 

functional I(y) - iL(yt py)dx if y€ K, I(y) «- + oo if y£K« 

According to a general result given in £5J, the functional I is 

sequentially weakly lower semicontinuous* On the other hand, (9) 

implies that every level subset { y € W^»p(il); K y ) * \ \ is 

weakly compact. Hence the functional I has at least one minimum 

point which by Theorem 1 is a solution to (4)f (5)« 

Given a function f£ I^0(R) we set (see£4l) 

f(y) « V * ' » conv f(Ty-f ,y+f J\N) -
T>o VCN)=o 

- tm(f(y))»M(f(y))]f y€R 

where 

(10) M(f(y)) » lim ess sup f(u);m(f(y)) « 
I-a>o u£Cy-J">y+Jj 

a JLim ess inf f(u). 
d->© ueCy-Jjy+fJ 

Consider the variational inequality (the "obstacle problem") 

n 
X T u ^ y ) ) - f (y )£o on jfa , 
i«l x x± x i 
n 

SZU^y^))^ - f(y) . e on {y> -j/} , 
y ^ y * o n J 2 . i y » o on T. 

(XI) 
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where a., 1 -» l9...n are continuous monotone increasing functions 

satisfying the conditions 
r 

(1?) a i ( o ) * o ; l a i ( r ) j 4 M( \ a j L(o)ds+|rUD for a l l r 6R , 
o 
r (13) lim r""1 ( a,(s)ds -- + 

|r|->c* <? * 
while f is a L^0Q function on R which satisfies 

r 
(14) f(r)(r«-o)3>o;lf(r)»6M( J f(y)dy+|r|+l) a.e. r6R. 

o 
THEOREM 3 Under the above assumptions Eq.(ll) has at least 

one solution yC VQ Cil) in the following sensex there exists a 

Radon measure u. S3SL SX ££& qfc-^CjQ.) such that 
n 

2-(a-iCy... >>* -* • K a,e# x € Jfl 
i-1 1 *i xi « 

^ t o o n i l j ^ - o o n int (y> "^3 

q(x)6f(y(x)) a.e. x£ Jlj a±(yx )€ L
X(XL)tl - l9...n. 

To prove the theorem it suffices to apply Theorem 2 where 
y n z 

L(y9s.) - Jf(r)dr+ ZJ (* a^sjds ; (?•*)€ RXB?. 
c i«l o 

Theorem 3 extends some recent results in£6] 9 [7j» 
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