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NECESSARY CONDITIONS FOR THE MULTIPLE
INTEGRAL PROBLEM AND ELLIPTIC
VARTATIONAL INEQUALITIES

Viorel Barbu
University of Iagi, Romania

We are here concerned with the optimization problem
) mini_‘jLL(y(x). py(x))ax; yex

where K = {yé wi'l’(_a_); y(x)3Y (x) a.e.xe_ﬂ.i (the case
K= Wz'p(ﬂ.) is allowed ). Here L)L is a bounded, open subset of
R® with e sufficiently smooth boundary [ end € (D) 1s &
given function such that "Ié oonl . The integrand

L:RXR? —> R is assumed to satisfy the condition:

(1) L(y,z)po for all (y,z)€ RXR" and for mome positive M.

(2)  L(y+u,z+v) e exp M(|(u,v)l (L(y,2)+M(u,v)l (1+1(y,2)1))

for ell (y,z) and (u,v) in RX R%,
Given a locally Lipschitzian function \f R —3 R we
shall denote by st the gradient of \f and by D\f the mapping

(3) DY(y) = AYA ToEY PP(S(5,8)\ W)

>0 V(N)=o
where V 1is the Lebesgue measure and S(y.x ) is the ball of

radius y and center y.

If '3‘1’ is the generalized gradient in the sense of Clarke
of \f then as is readily seen we have: D\fcra\f.

THEOREM 1 Assume that condition (1) holds. If
y*€W'P(l), 1£ pLoo is optimal in problem (1) then there
exists & function }ZG 11(Q1;R®) and a Radon measure ,,J. on N




suoh that aivy -pé 1) and

(4) (atvy -r.z)e DL(y’, yy’) @a.e. on (L

(5) réo on_(L;r- o on int {x(.{l;y‘(x)) Y(x)}.

The special case K = W&’P(ﬂ) of this theorem has been proved
via a minimax theorem by Clarke [3].

We give a brief outline of the proof. The detailed proof
may be found in [2]. For )\ D o consider the problem

(6) mint-c{(lf\(y. Py)+ %(x,y))ax+ Bly-vZsy ew},"’(n.)}

wherein “'“m is the norm of H'::(ﬂ), myn+2, x(x,y) =
M =Y=)1? ana

I-)(y.z) = mi(n" L(Y':\O.Z-X?)\?(O.")do az

(f is & mollifier on B2+ ), Let v, be optimal in problem (6).
Since I-'\ and %, are differentiable it followa that there
extsts Y€ 11(Q;R®) such that atvy ¢ I Q)+E™(R) and

(7)’1) = VZI-)(F>0 Vy'\). diVT; V]_L‘\(YA' VI )”'V",\(xny'\ )"’A(Y)"Y.)

where VL)‘- ( VlL'\, 721.*) and A is the canonical isomorphism of
Hy(Q2) onto H™(Q).

Next it follows that y)- y"-—:) o strongly in H':(_Q.) and
by (2) we deduce that {VL}‘(y). VY,\)S is a weakly compact
subset of Ll(_(L;Rn"'l). Thus we may assume that

Y) —_— "I_ weakly in 11 QR

(8)
VII.'\(y) w3, ) --)3 weakly in I1(Q).

Then arguing as in the proof of Lemma 3 in (1) we find that
(K(x)o".(x))EAnL(yj(X). 75 (x)) ace. x6 N1 . Finally, there is

1
ReD L) such that  xx(x,3,) —>| weakly in I'(Q)H(LR).

Since x,\(x.y'\)- -)'l(y'\-‘j/(x))".éo a.e. x€ {1 we may infer

N



that rl- is a negative measure on (1L . Then letting )\ tend to
zero in (7) we find (4) as claimed.
We continue with the following consequence of Theorem 1.

THEOREM 2 In Theorem 1 assume in addition that L(y,.) is

convex_ for every ye€ R and for each k>o there exists Ck such that

9) L(y,2)» kiziP-clylP-c, for a1l (y,2)€.RXR"

where C is independent of k,y,z and 1£pdeo . Then there exist
the functions y'¢ K, 51e Ll(.(l;Rn) and a Radon measure M on n
such that divy -H€LM(Q) and satistying Eqs. (4), (5).

To prove the theorem consider on the space Wi'p(_(l) the
functional I(y) =J§L(y. pylax if y€XK, I(y) = +oo if yEK.

According to a general result given in [5], the functional I is
sequentially weakly lower semlcontinuous. On the other hand, (9)
implies that every level subset lyewz'p(_(l); I(y)& ,\S is
weakly compact. Hence the functional I has at least one minimum
point which by Theorem 1 is a solution to (4), (5).

Given a function f€ I{ZO(R) we get (see[4])
?(y) =n /\ conv £(Cy-d ,y+d I\N) =
0 V(N)=o
= [m(2(y)),M(£(y))], yeR

where

(10) M(£(y)) = im ess sup £(u) sm(£(y)) =
-0 uely-8,y+J]
= Jlim ‘ess inf £(u).
>0 unely~d,y+d]

Consider the variational inequality (the "obstacle problem")

n

gl(“i(yxi”xi - 2(y)Lo om 2,
an 2

S (aylr g = £ =0 o {y>v},

y)’f on ) ;y=o0 on I‘_
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where 849 i =1,...n are continuous monotone increcasing functions
satisfyin;; the conditions

r
(12) ai(o)=o:|ni(r)\6 M(f ai(s)ds+|rl+1) for all ré€R,
o
(13) lm ! jr a,(s)ds = + oo,
In=>0® o

while £ i3 a L::o function on R which aatisfies
r

(14) £(r)(r=c)Dosle(r) & M( § £(y)ay+iri+1) aece. reR,
c
THEOREM 3 Under the above assumptions Eq.(11) has at least
one solution yew%'l(_ﬂ,) in the followins pense: there exists a
Badon meagure | on (2 snd q €1M(2) guch that

n
E:L(ai(y’i))‘i-q ") awe.xE€ n

K&oon s f=oonint]y>V)
q(x)€ ?(y(x)) a.e. X€ N ; a,_(yxi)e D = lyeeen.

To prove the theorem it suffices to apply Theorem 2 where
y n N

L(y,s) = § £(r)ar+ 1)31 §t a (s)as 5 (y,8)€RXE",
c =) o

Theorem 3 extends some recent results in [6], [7].
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