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SOME PROBLEMS CONCERNING THE FUNCTIONAL
DIFFERENTIAL EQUATIONS

M.Svec, Bratislava

We consider the equation
(1) x(t) = £(t,x,.) ,

where ;:(t) means the derivative of the vector function x(t) at
the point t . If x(t) is a function defined on the interval
[to-h,'l'), where h>0, t, ,T are real numbers, then X, = x(t+0),
IS [—h,O] for t€ [:to »T) as usual. Let us explain the meaning of
the notation used in this paper. Let n be a natural number, R
the n-dimensional vector space of the points X = (xl,x2,...,xn)
with a suitable norm |.| , C = C([-h,0],R®) the Banach space of
all continuous functions Yy with the norm H 1,/”: max {"l}’(t)l ’
te[-n,0]} , c, = {Ppec : $) =0} a suvspace of C . Furthermo-
re, let B = B([t, ,T),R?) be the Banach space of all functions con-
tinuous and bounded on [to »T) with the uniform norm ”u[[u =
= sup {|u(t) ’ tE[to ,T)} and B, = {u(t)EB du(ty) = O} a sub-
space of B . Let §€ C, be fixed. Then Bg= {z(t) : [to—h,l‘)—>
R, 2(t) = @(t-to) for te[to-h,to:] , z(t) = u(t) for te[to,'r);
u(t)EBo{} is a complete metric space with the metric 9(21,22) =
= [lug=ull, » where z(t) = uj(t), z,(t) = uy(t) for tE€[t, D),
ul(t.),uz('(.)EBo R
As usual, the initial problem for (1) is formulated as follows:
For given t €R, YEC find a function xECS[to-h,A),Rn) such
that x(t) = Y(t-t)) for t€[t -h,t] and x(t) = £(t,x,) for
t E[to yA). We shall denote this solution by x(t,to ,’l}l) and say
that it is given by (to ’ 1//). Because every WEC can be written
as  WY(t) = X+ (I)(t), where X = Y(0), (PECO , we shall write
x(t,to ,X°+@) to express that the solution x passes through the
point Xo at t=t° .
Now, the main problem we will discuss is the following:
(P) Let be given TER, t,<7T, XO,XIERn « Find @ECo such
that the solution x(t,to,xo-f@) exists on D‘o ,T) and
1lim x(t,to,xo+(I)) =X, as t—T-.
The function f 1is subjected to the following hypotheses:
T
(H‘.I.) f£(t,p) is continuous on [to ,T)xC and J [f(t,o)ldt =

t

=K<m'
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(Hy) There is a function ,G(t) continuous on [to ,T) such
that |2, Jp) - 2(t, ¥p)| S ) ||py- || for every
’ T

Yy, Y,EC and tE[t, ,T) and J/.‘;(t)dt = k<1 .
t

o
The hypotheses H, and H, being satisfied, we can conclude

Theorem 1 (1| . Let H, and }{2 be satisfied. Then the solution
x(ty,t,, Y, 1;/60 exists on [to »T), is unique and 1lim x(t,to, ‘y/)=
= X\ ER as t-T- .

Theorem 2 LIJ(P Let H) and H, with k<1/2 be satisfied. Let be
given X.lGRn , €C_. . Then there exists a unique XOERn such
that 1lim x(t,to,xo+ ) = xl as t—T- .

Now we define a map F(Xo,(ID) : RnxC°—+Rn by the relation
F(Xo,(p) = lim x(t,to,xo+©) = xl as t—T- . The following theorem
mentions some properties of this map.

Theorem 3 I:l] « Let H; and H, with k< 1/2 be valid. Then

a) the map F(X,, d), by fixed ¢ , is a one-to-one map of R"

onto R ;

b) F(Xo'(P) fulfils the Lips)cc:hitz conditionl::

|Pxyy, O -Fx, §o)l <eklx -x,] + (k-1)]|0,- B,

Our problem (P) was partially solved in the papers [1], [2] , [_3] .
In Ll] we obtained some results of negative character, e.g. if H
and H, are valid and if X,X,ER%, |X |+ # 0 end fx1l>|:|x°| + K|
—‘—_’i , 0<a<1, then there is no solution of the problem (P) for

a
BEs, . lof<x e -

For further purposes we need an estimation of Ix(t,to,xo+ (P)|
and ||xt(t°,xo+ @)“ « Let us use the notation x(t) = x(t,to,xo+¢).
Then, xt(e), 9€|:t-h,t] being continuous, there exists vELt-h,t:I
such that |x(v)| = ”xt . Suppose that tZt_ . Then either vt/
or vELto-h,to:l .

Let tho . Then we get

v v
“xt” = ,x(v)| =|X° +jf(s,xs)dslﬁlxol +ﬂ f(s,o)[ ds +
v to to t
+ ﬂf(s,xs) - f(s,O)ldsSlXol + K + ”@H + J‘/j (s)“xs”ds .
Yo Y

ir VEhto—h,tO:] , we have t
“xt = Ix(v)l = |X°+(§(v-to)| Slxol-o- ||(D”+ K +f/3(s)“xs|lds o
Y



407

Thus, for th_to »T) we have
t
Fellslx,] + x + 1Bl + [ peollxflas
t
o

The application of Gronwall-Bellman 1emma gives

t
(2) eIl lexg| +x +l@l] exo ¢ [ peorasy, eefe, o,
).

o
which implies

t
(3) lxc)|[=||lx [ =[Ix,]+ x +[[ @] exp (j/b(s)ds, tElt, ,).
t

o
Let us turn our attention to the dependence of T‘(xo,g) on @
by fixed X, » It follows from Theorem 3 that, if , (Dl- 2” = 0, we
nave F(X,®,) = F(x;, §). 1z [|§,- @,] # 0, it may happen that
F(X,, @) # F(X, §,), but also F(xy, §1) = F(x,, @2). If the for-
mer case occurs, it influences both solutions x(t,to.x°+ @1) and
x(t,to.xo+ @2). The follow_ing theorem holds.

Theoren 4. Let ||~ @, # 0 ana rex,, $)) = F(x,, §,). Then
either

a) 0<lxct,t ,x + B -xct ¢, x,+ Bl < 16,- B,
or ~ )

B) [[x(t, 0% * B )-x(t, b, X+ @a)llu =0.
Proof. The function |H(t)| = |x(t,t X+ ®)-x(t,t ,X + @2)“ 2t
is nonnegative and |H(to)| 0= IH(T)T . Th_us there exists tle
[to »T) such that H(t;) = max{]H(t)|, te[to ,T)} CIE =t
the second case (b) occurs. If t,€ [t°+h,T) and H(t,) # 0, the
hypothesis H2 yields

(4) | f(e) | < ol (g ¥e 1)-x, (12 %,+ D)l < AlOMCe
tE[t +n,T) .

Hence we get

T T . T
() 5 | = | [Rwar] <[l e < f/b(t)dtlﬂ(tl)lﬁ
4 Y1 et
<xlu].

Therefore t1€_£t°+ h,T). Suppose that t;€ (to,toﬂx)) and t(.hx;t
> o=@ i he inequalities (4) and (5) hold
[H(e 1= ||(P1 ®, ||+ In this case the qQ
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as well and the same reasoning as above gives a contradiction which
completes the proof.

In the following let X, be fixed. We are goxng to examine the
properties of the set of :unages of the set G ={d€E Co ”(P“ <r},
r>0, by the map F . We shall denote this set of :unages by F(XO,G).

Theorem 5., Let Hl » Hy and H3 be valid with

(H3) There exists a constant d, 0<d=<1, such that for any

XOERn and any in B, i=1,2 and any @iECO , i=1,2
the inequality
t +h

d“@l (PZH = IJ [f(s X 42, 4) - f(s,Xo-fz?_s)]dS |

holds where z; (t) = §;(t-t)) for tE[t -h,t] , z;(t)=
= y;(t) for tGLto,t +h_| , i=1,2 .

Then the set F(X,, G) 1is bounded, closed and connected.
Proof. The boundedness of F(XO,G) follows immediately from (3) or
from Theorem 3, (b). Consider now the set of solutions S =
= {x(t,t. X +®) ¢ e G} on [_t ,T). From (3) we have that these
solutions are uniformly bounded on [_to ,T) by L|X l + K + r]e o
The same holds also for the set {x (thX +(P), se[t ,T)} as
follows from (2). Further, for t,t’C ]_t.o ,T), t<t’ we have

t’ t)
|x(t?,t 0, X+ Pr=x(t,t X+ §)| < | |£(s,0)]as + j /Tg(s)llxallds .
t t

Now, from the existence of Jlf(s,0)|ds and J p(s)ds and from
o o

the uniform boundedness of I xs“ we get the equicontinuity of the

elements of S on [t »T)e. Thus we may apply on S the theorem of

Ascoli-d’Arzeld on every compact set from |_t° »T). Suppose that

X; EF(X ,@), i=1,2,... and that lim X, =Y as i-»00 . We are go-

1ng to show that YGF(X ,G)e Let {x(t to,X +(D ), @iE G} be the

sequence of solutions of (1) such that 1lim x(t, to X°+ i) = Xi as

t—-T- , i=1,2,... « Applying the Ascoli-d’Arzela theorem we get that

we can choose a subsequence {x(t t, X + @ ), @ E G} from

{x(t toX +(§ )} which converges to a contlnuous funct:.on u(t)

unlformly on every closed subinterval of B’o ,T)e Let 1lim x(t, ty

X +¢ as t—T- . Evidently 1lim xl =Y as k—o00 . The
k k

solutlons x(t to,x +(ﬁ satisfy the equations
k
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T
x(t,to,xoi-@i ) =Xy -J f(s,xs(t.o,)(o+@i ))ds , k=1,2,¢00 &
k k 1 k

The application of Lebesgue’s dominated convergence theorem gives

T

u(t) = Y -f f(a,us)ds for tE[to*h,T) .

t
Thus, we have got that u(t) satisfies (1) on [tom,r) and
1lim u(t) =Y as t—->T- . The problem which appears here is: How to
ensure that u(t) satisfies (1) on [to ,T); if this is possible, to
which function @GCO this solution will correspond ? The validity
of H3 represents one of the possibilities. In fact, we know that
the sequence {x(t°+h,t.°,xo+ (l)ik)} converges to u(t°+h). Therefore

it is a Cauchy sequence. Using the hypothesis H3, we get
|x(t°+h,t°,X°+ q)i ) = x(to+h, b, X+ @i )| =
t‘oﬂ‘ m n
= | [ TCouxg (tg%or B; 1-£lo,x, (1) X,+ B; 1]as|2a]|B; -y || -
m n m n
t
o
Hence we get that {@1 } is a Cauchy sequence and therefore it con-
k

verges to a function (I) in the complete space C0 . This convergence
is uniform on [-h,0] .

Now take the function v, (t) defined on [to-h,T) as follows:
v () = X+ (I)ik(t-to), tE€ [t -n,t ], v (t) = x(t,t X+ @ik) =X+

t T
+ ] f(s,xs(to,xoupik))as = % -J f(s,xs(to.x°+cpik))as , t€[t,D),
to t
k=1,2,... « We get that vk(t) converges to v(t) : v(t) = X+
+ Ot-t)) for t€[t,-n,t ], v(t) =u(t) for tE€[t, ,T) uni-
formly on every closed subinterval of [to-h,T). We get also that

T
v(t) = X, +J”' f(s,vgl)ds = Y - f f(s,vglds , te[to yT) .
to t
Thus v(t) = x(t,to,xo+®) and 1lim v(t) =Y as t—T- . This pro-
ves that YGF(XO,G) and therefore F(XO,G) is closed.

Finally, we have to prove that F(XO,G) is connected. Suppose
the contrary is true. Then F(XO,G) can be represented as F(XO,G)=
=F‘1UF2 » where F, , i=1,2 , are bounded, closed and disjoint sets.
Let 6, = {fea: Fx,P)EF,} , i=1,2 . Evidently G = GUG,
and (}]_ﬁG2 =@ and Gl and also G, are nonvoid. Furthermore,
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the continuous dependence of solutions on the initial functions,
Theorem 3 and the closedness of Fi y 1=1,2 imply the closedness of
Gy » i=1,2 ., But then we have that the closed ball G is the union
of two sets which are nonvoid, closed and disjoint which is in con-
tradiction with the fact that G is connected.

Remarktl+hThe constant 4 in H3 has to satisfy also the condi-

tion d SJ ﬂ(s)ds for H,, Hy not to contradict each other. In fact,

to

we have t *h t *h

d“q)1 (Pa“< IJ [£(s, zls)—f(s,z28):|dsl J /b(s)“zls 2z, /lds .

¢-+

If we take z(t)- P, (t-t), telt, -nt],z(t)—y(t),t ty

i=1,2 , we have that Hzls 28||_|| @ @ H and from the precedlng
t°+h
inequality we get that 4 SJ /3(s)ds .
o t +h
. . k < < .
Theorem 6. Let be valid H,H,,H; with =g < d 5 B (s)ds and H,:

O
(H4) For every two points X, XERn and every y(t)e B, there
is (PGC such that for z(t) = (P(tt ), tELt ht],
z(t) = y(t), tEE,o ,T) the equation
+h
to
X=X + { 2(t,X *+z,)at
to
holds.
Then the problem (P) has a solution.
Proof. Let xl,XOERn be given. Choose yl(t)EBo such that
lim yl(t) =X = xl-xo as t—T- . Then denote

(6) Y o=x - f £(1,X +y;, )4t .
+h
With regard to H4 applied to XO,Y €ER® and yl(t)EB there exists
<D € C, such that
t°+h
(7) Yl = Xo + ‘J f(t,x°+zlt)dt ’

o

2.(t) = Q,(t-t)) for tE[t -h,t ] and z,(t) = y;(t) for tE
[to, T). From (6) and (7) we get
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T
(8) xl = xO +f f(s’xo’zls)ds .
t

Denote

t
yz(t) =J f(s,X°+zls)ds , tE[to »T) &
t
Evidently yz(t)EBo and 1lim yo(t) = X=X, =X as t—T- . Now
we construct
T
Y, =% -j £(t,X +y,,)dt .
ty*th
Then with regard to l-l4 applied to XO,Y2 and yz(t) there exists

@ (SX] such that
2 [) t°+h

1 =X, *J £(t, X250 )at
t

o
where zz(t) = @z(t-to) for tel'_t.o-h,t.o:l » 25(t) = y,(t) for
te [to ,T). Once again we get

T
X =X, +j £(t,X +2,,)dt .
tO
Put t
y3(t) =J £(8,X *255)ds , tel'_to ,T) .
t'0

We have that y3(t)€Bo , lim y3(t.) = X,-X, = X as t—T- . Proceed-
ing in this way we get the sequences, n=2,3,... «

1
(9) ¥, (1) =j £(s,X +(z  _y)g)ds , te[to ,T)
1;O
T
(10) h=% -J £(t,X, + Yot
to+h
t°+h
(11) ¥, =X, +J £(t,X, + (zn)t)dt ,
t

o]
2. (t) = ¢ (-t ) for teLto-h,toj y zp (1) =y (), t€lt, ,T)

and
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T
(12) X =X, +f £(,X, + (z)),)at
%
(13) limy (t) = X=X, = X as t—T- .
Now from (10), (11) applying H3 and H, we have
t°+h
(14) ”q)n— Qn-lu = | f |:f('t"xo"'zm.) - f(t"xoﬂzn-l)‘r.)] at Ié’ -
T o
: _ 1
= l.! Lj:‘(t"xo"'ynt.) - X, + (yn-l)t]dt |z <

t°+h

T 1 <

A p N Dsuvmalil = 3 porssro] st
+h toth

From (9) using H, and (14) we get
T

(15) “ yn+1-yn“u = j P(t)“[zn'zn-l] t“dt = k”yn'yn-lnu *

o

Because k<1, (15) means that the sequence {yn(t)} converges uni-
formly on [to »T) to a function y(t) . But (14) implies the uni-
form convergence of the sequence {q)n(t)} to a function (I)GCO .
From all this we conclude that the sequence zn(t)} converges uni-
formly on [to-h,T) to the function z(t): z(t) = (I)(t-to) for tE
[to-h,to:l y 2(t) = y(t) for tE[t, ,T). Then from (9) we get

t
y(t) = f £(s,X *z.)ds , te[to ,T) .
t

o
Therefore t
(16) Xy + y(t) = %y + [ 28X +z,)ds
Y
Denoting wu(t) = X +z(t) for t&|t -h,T) we have
an  ou(t) =x + $e-t)) for te[t -h,t ],
t
u(t) = X, +J £(s,ug)ds for tE[to »T) .
t
0

Thus, u(t) is the solution of (1) corresponding to the initial va-
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lues (to,xo+ (1)) . From (12) and (16) we get that 1lim u(t) = Xl
as t—T- and u(to) = X, « Thus, u(t) is a solution of our prob-
lem (P).

Theorem 7. Let Hy, Hy, H3 be valid and let

T t’.oﬂ‘
(18) d> f_exp (j ﬂ (s)ds)-l:] exp (j ﬂ(s)ds) .
to+h t,

Then the map F(Xo, (I)), by fixed Xo , 18 a one-to-one map of Co
into R® . This means that in this case the problem (P) has at most
one solution. _

Proof. Let P, P,€c_ H@l- @2” # 0 . Then

T
|pex, Bpr-rexy, G| = || Lete,x, egux e yn-se,x 2o, x 0+ 6]
t
t +h °
at |z IJ [ece,x (tgox + By -£ct,x (1, X+ D) at ] -
T %
- If [£0t,x, (e X + D)= (e,x, (£ ,X + ®,)]at|2 dH@l—@zll -
t +h
o T

= [ peollxg ey xgr Bp-xg ey, x + Gy )llas
+h

Using Lemma 3 from [:1] which asserts that, if H, end H, are valid,
the inequality
t

”xt(to,xo+(bf-xt(to,xo+@2)||5”(1)1-(1)2” exp (f /5(5)"3)
holds, we get Yo T
(19) |Pex,, ®1)-Fex , &0 2] D,- D, {a + [1-expf (s)as]
t, +h ty+h

. h(s)a
exp {oﬁs s}

which proves our theorem. .
Remark 2. If we consider the scalar equation x(t) = a(t)x(t-h)
where a(t) # 0 for tte.&o,to+h:| , then H, will be valid if there
.0
is (PECO such that j a(t)@(t-to-h)dt # 0 . In fact, we have

i
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't,;°+h t,+h
X=X+ al@x AD(t-ty-hat = X, + X, [ aw)ar
t,*h
t
o

o
+ )\.f a(t) d (t-t -h)at .
t

From this we can calculate )\ and then aJ@ will be the sought
function,

Remark 3. It can happen that for some given XO,XGERn and
y(t)e B, there are more than one function (PECo satisfying H4 .
But if we suppose also the validity of H,, there can be only one
dec, satistying Hy. In fact, let $,, d,€c, ve two functions
satisfying H, foihgiven XO,XERn and y(t)EB, . Then we have

° t _+h
X=X + ‘J f(s,X°+zls)ds =X, +\J f(s,Xo+zZS)ds ,
t t

where z,(t) = ?Pi(t-to) for tﬁi[ﬁo-;,toj » 23(t) =y(t) for
tez[to’to+2j+ﬁ i=1,2 . Applying H3 we get
o
0= I j |:f(six°+zls)-f(s!x°+zzs)_:|dsl 2 d”@1'®2|
to
Thus @1 = @2 .
It would be desirable to clear up the relation between H3 and H4 .
It seems to us that both hypotheses H3 and H4 can be substituted by
another one from which both H3 and H4 follow. This problem will be
discussed in another paper.
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