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ON THE REGULARITY OF WEAK SOLUTIONS TO VARIATIONAL EQUATIONS
AND INEQUALITIES FOR NONLINEAR SECOND ORDER ELLIPTIC SYSTEMS
J. Nedas, Praha

The history of the solution of the 19th Hilbert’s problem, i.e.
in fact of the problem of regularity, is described in the book by
O.A. LadyZenskaja, Ne.N. Uralceva [1] and in the paper by CheB.
Morrey [2]. The weak solution is a vector function from the Sobolev
space Wl’2(fl) satisfying the equations in the sense of distribu-
tions and it is regular if it belongs to C(l)(gl)' (interior regu-
larity) or C(l)(fi) (regularity up to the boundary).

The problem of the regularity for the dimension n=2 was solved
very soon (1937) by Ch.Be. Morrey [3], also for systems. The genera-
lization of this result for higher dimensions, but only for a single
second-order equation, was done by E. De Giorgi [4] in 1957 and his
method, based in fact on the maximum principle, was further develo=-
ped by several authors, see J. Moser [5], Ge Stampacchié [6], the
book’[l] and others.

If we consider a vector function u = (ul,uz,... u,) from
[Wl’z(flﬂ B satisfying the system

(1) - —,%E-l- [ag(x,u,v u)] + ag(x,u,v u) = £(x), 1r=l,2,s¢s m,

if f.e Lz(Q) and if, for example, u = W on 2Q , Wwhere

wle [Wl’z(Sll]m is a prescribed function, then the existence of a
weak solution as well as its uniqueness can be proved relatively
easily, see for example the book by J.L. Lions [7], under the stan-
dard assumptions:

r T r r
. . K]
(2) i + 28 + ’bao + %0 Se
'zus ?us ’aus ’aus ’
3 IX; 9 3%
gai‘ r S > r r
(3) w715 % %%, % >0,
')—-—-
’aXJ-

(4) al (x,7] s"’Lg)”lIi‘ + ag(xy7 o4 3)71, Zpmind, B>0,

provided that the derivatives of a in (2), (3) satisfy the Cara-

i
theodory condition.

Instead of equations, we can study inequalities, if for example
on £ (or on some part of 9 ) a unilateral condition of
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Signorini’s type
(5) b ug z Vo r=1,2,000,k = m,
is given. Writing
f{ 1,2 m >
(6) k= {vel?@Q]" b v, 2y, on 23Q} ,

we look for ueK such that, ¥vek,

(7) jai(x,q,Vu) (% - %) dx 2 /fr(vr'ur) dxo
q i i 4

For the existence and other questions, see [7]. The conditions
(2) and (3) guarantee the first step to the interior regularity,
i.e., the proof of the inclusion u€[W2’2(Q’)]m, Q'cQ. 1r
Q'= Q, we get the first step to the regularity up to the boun-
dary. For the idea of the proof of this step, see also [7]. If, for
simplicity, we restrict ourselves in the following to the case
a?(x,u,Vu)=a§(Vu), ag=0, then we can immediately see that this
first step leeds to an equation in variations obtained through in-
tegration by parts of the equation

3
r i r _ .
(8) /ai(Vu) 3%, dx "_[fr‘fr dx, Yr €d(Q);
o KyR
if we denote by u’ some derivative, then we get from (8), substi-
tuting here 50' :

du_i 9
(9) /ars s -—-—c{—r dx = / fr' Y dx,

ij ‘axj CEN
r n
where alS = —2— , (9) is a linear system in u’ with, in general,
ij ?ug
9 XJ-
only measurable, bounded coefficients azs..

Let us mention the known fact that once geing 11e&(1)(§2ﬂ m, we
get arbitrary higher regularity of the solution, provided that the
coefficients and right~hand sides are regular enough.

The significance of the problem of regularity is underlined by
the fact. that the regularity up to the boundary, provided that the
coefficients are analytic, implies that in the potential case the
set of critical values is a sequence, tending to zero, see S. Fudik,
Je Nelas, J. Soudek, V. Soulek [8]» Also the Newton’s type methods
are convergent only in the space of regular solutions.

For more general systems than discussed in the paper [2], Je
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Stard proved the regularity in [9], also for r=2, using. the method
of the papers by J. Nedas [10] [ll] concerning higher order single
equationse.

E. Giusti, M. Miranda constructed in the paper [12], for n23,
a regular functional, whose critical pointisu = 3{’5' e This functio=-
nal is continuous on [Wl’z(Q )]m, but not differentiable. In the
same work, a system with coefficients a = Ars( ) 2%

‘axJ » 8 °F
=1,2,e00y0, 1is constructed with the e111pt1c1ty condition
rs_r_s > 2
(10) KSqinsz o Il
and the same solution 1%1' Some variations of this type of example

can be found in the paper by S.A. Arakdejev [13].

Let us start with a more detailed description of the results
of the paper by J. Nelas [14] with small complements.

The easiest example of a fourth order system with a non-regular
solution is '

(11) Alug + —1 32 [Auv;Au;Au ] =0
. . . = 0,
1 (n#1)2(n-2) 0%5%g TR

provided that this system is defined on the set of u’s such that
AuiAui £ (n+1)2, The solution of this system is ui=xilx| and the
corresponding conditions (3), (4) are satisfied for n % 6.

K being the unit ball Ixl<1, 1let us consider the system (in
the weak formulation),

R

k

Ruui g 5 BUuye 355
+A ] ?x.o A%, dx+/L4K CEMEETE dx

du,. ou Ju P
i % st °9 i3 -
+’L1f ’axr, I, Xz X, dx = 0,

(fl j ?ukk 3?4‘
dX*‘/L ——t — X+
? ¥ 24 °* X

+

-1)3-

' 3 A n+A ,(n-1)
)'3 = 2(!1;% =n for 3 S n z 4, /Ll = -—_—j——'_z n2’

(n=1)*(n+1)

i,j=1,2,6ee n, where A

1+ 4, (n-1) S
A, == —LT and A, is large enough. If we put u.. =
4 (n=1) 2 1J
= xix- -1 6 |xl then u..=0 and u sati (12). The coef=-
'x' ’ ii iJ- Sfy . e C

ficients of (12) are defined only for such " lj;j" where
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Puyy duy ( n’-
Xy 23Xy n
For n 25, we have (3) and (4), for 3 S n = 4, we have (4).

If we replace the nonlinear term in (12) by

1 +§)2, d > 0 and small enough.

2 2 du,.: du . Qu,,
13 Ag(g + B rL 4
1 n2 b ’axr 22Xy, ’ox/c

. (€ + 2Uap 2oy 1 a‘fij dx
_’axa 'axc ’ax'&

with € > 0 small enough, we get the same result with coefficients
defined everywhere.

If we consider the functional of the total potential energy in
finite elasticity under the incompressibility constraint then there
exists a universal, isotropic body, see Ces Truesdell [16], and its
deformation from the so-called 5th class, a critical point of the
functional under the constraint, which is not regular. But the set
of irregular points is a segment, so it is not possible to get in
this way immediately an exeample of an irregular solution without a
constraint because the Hausdorff measure of irregular points must be
less than 1, see E. Giusti [17].

The example (12), (13) is a vector function lxlf(|§‘) and the
functions fi( ) are not linear in f e If we write such an exam-
ple in polar coordinates r, 1?‘1, 1}‘2,.9. ne1? O<r<§&¢, 0< 173<

< Ty J=1,2,eeeyn=2, O <1}n_1<:213, putting

(14) X) = T cos ¥y, X, = r sin 19'1 cos J‘Z’“"xn-l =

= r sin 1}‘1 sin 19‘2 ees 8in n-p COS va-n-l’

X, = r sinvy sin19’2 eee sin ';'n-2 sin VLn-l’

(15) 3lv=ll, }-zv=3v, 1 2v . Vy eee,

?TT T IS, 2 rsin""l}ﬂ'z 3

1 Ry
r sin ¥jeee sin P ? A”n-l KRN

we first get ;v = 8ij g; s where a; 5 is an orthonormal mate

rixe Let us define the elementary differential operators

1 _2h, ..., 30 = (30,003 h)e
s:.n'v-l '31?*2

3 __2h Y =
(16) ,h = 3h =
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We introduce the space w1’2(s), S being the unit sphere, as the
closure of infinitely differentiable functions in the norm

2 5 =5 1/2
(17) (f [£° + Q3 £33, £] ds)

where the indices with primes are summed from 2 up to n. Starting
from the system (8), we get for f another system on the unit sphe-
re b

(18) f [~ (n+1) AT ( F,e, 30)F, + Ag,(ﬂ},f,if) 5j,?r] ds = 0,
S
where f,Te[wr2(s)]".
We get immediately

A% A%
(19) ,afi | = 3531"5 S,
(20) —7—1;&?}43 }‘S>oc§J 5 o >0,

Let J be the kernel of (18), i.e., the set of all the solutions
from [Wl’2(S)]m. We introduce J,CJ, the trivial subset of J,
consisting of the linear combinations of the coordinate functions
cos ‘Vq'l, sinw/“l cos 4%2, eoe sin19‘1 sin&‘2 ees sin 17‘n_2 sin n=1°

Let us consider a weak solution to the system (Kg; = {le<f})

(21) ] I'(Vu) ﬁ’r dx = O
Ke
We easily get
Theorem 1. The necessary condition for the regularity of every
weak solution to (21) is J = J,.
Proof: Let us suppose the contrary and let us take. fe€J\Jye
Put u=rf(%); u satisfies (21) and so

du u
=2 (0) = lim ==X (x) = 11m[_a11(-17')f (F) +ay ($)7 50 (H)] =

1 r30 l

3%, £ (x); hence u,(x) 1is a linear function and, therefore,

f€Jy, which is impossible, gee.d.

So the study of the kernel J 1leads to the construction of an
irregular solution in 3 and 4 dimensions. If J = Jg» Wwe can hope
that this condition is sufficient for the regularity of every weak
solution of this equation.
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Let us consider some sufficient conditions for the regularity
in 3 dimensions in more detail. We refer to the papers [14] and [15].
Let us consider the Euler equation

(22) j

2
(Vu) (fr x=JfIi' Lfrdx,

a gj i *i fo} X3
where the Lagrangian F(} ) is defined and continuous together with
its 4 derivatives in the cube X_ = { f| Ifli z a} . Let 9 vbe

smooth enough, let f € we> (§2) u2€ W3’2(§)), and let us look
for a solution u of (22) such that u€ Ew3 2((2ﬂ B y=u on

9Q, llu ”1’«;= max ( max 3%, (x)l )< a. We shall suppose the
r,i xeQl
ellipticity condition
2
R
(23) —rrs (i3 o lal, o
2§53
and the regularity condition
(24) cp =3 a2T>O,
where
24
(25) L

()é)ozfzﬂgﬂz f02 (D4
T i k A ’7 i
p) f ;9 f 29 § " f r,i

Theorem 2. (A priori estimate.) Let (23), (24) be satisfied. If
u is the solution in question, then

2 oy 2
(26) lally 5 cae 2 lg 5+ 11015 5.

For the half space Rg we get
Theorem 3. Let Q = R;, WO = 0, 1let (23), (24) be satisfied.
Then

’ < 2
(27) Ilu||3’2 -c(||f||2,2 +||f”22)
Clall} -<j S, 0rw? e,
k,2 =L £k
s s . . . 9 r:
Main_idea of the_proof: Let ? be the derivative ’ .
R¥T X

We have
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2 ‘au"?"
(28) j(f)" C{r —f a?rg - —=2 Tr oy +
R; fi fj?xjaxi

3 2w ul .
2°F s 1 9. ax

+ DJi Qf af X A%y, VX =h ot L

W ot

J
Subst_itutlng the function u for (’0 in (28), we get

(29) 12“_:_;] 4p 'au;, 2u) du} 2 u?
3 r s t v .

Through integration by parts, we obtain ¥Yved (Rl) :

(30) f(v’)4 ax% 9 mex [vx]2. [ (v1)2 axe
- oo xXeR 1

From (28) - (30) we obtain

- oo

. » o .
(31) (e = 3T a%) lu ||1,2- llf’lll,2 o

(29), (30) imply also

Qu 2
(32) f Z ( »axr )4 dxf——ga—ﬂ "f”gz
gt Ti (eq=3Ta®)
3
9 2u
Because the derivatives 3 5 can be calculated from the elliptic
b
3
system
2 '
2 Q “u d T
(33) -—2F 2. = = r=1,2,e0e m,

T s =
gfigfj'uizxj x5
we get from (32) and (33)

< -1 21-1/2 1/2
(34) llu l|2’4 = cyeq] [cl-BTa ] [lli‘llz’2 + el 2’2] .

Differentiating (33) first with respect to x; and x5, we get

vl < -2 271=-1 i P 2
(35) |Iu||2’2 = cjep [cl-BTa ] (II:E‘IIZ’2 + ||f|12’2).

Finally, differentiating (33) with respect to X3, we get (27)

Qeeoede
The existence and uniqueness of a solution path, i.eo, 0f u
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from C([O,tcr] ’ [W3’2(Q)] M), cean be easily proved by the impli-
cit function theorem and (26), provided that £} ec([o0,1], w2*2(Q)),

ugGC( [O,T], W3’2(Q)), see [14] and’a‘[;15]. tor 5T and is maximal,

I
3Xi

ices, if t,<T, then mex ( max (x)) = a.

r,i xeQ

The papers [3], [9], [10], [11] and the papers by J. Nedas [18],

Jo Kadlec, J. Nedas @.9 contain, in fact, estimates of the condition
number, i.e. the estimate

%1
(36) = > h(n) Z 0,
2

implying the regularity. Here, as before,

(37) ey 1P S &l 29193 = e, 1912,
where, for simplicity, we suppose ai? = a"s-Ii'. In all the mentioned
papers, h(n) is not evaluated, each time only h(2) = O. A pre-
cise evaluation is done by A.I. Kodelev, see [20], where for systems
a generalization of H.Oe. Cordes’s condition is given, see [21] + Ko=-
S8elev?’s condition implies that the weak solution belongs to
[C(o)"“' (fl )]m which follows also from the fact that the weak so-
lution belongs to pg[wl’p(ﬂ )]m, provided that some asymptote
type conditions are valid for the functions aIi'(f ), see Jo
Nedas [22].

We shall sketch the proof of

Theorem 4. Let

(n-2)°

c 1+ -1
(38) s - n=1  © .

02 / 2
Vl + —r(;‘:m +1

Then the weak solution u to the equation

2¢ g
r r = L o
(39) f a;(Vu) 3 %; dx -f fi > % dx
2 (o}
lies in [c1)2&(Q)]®, provided that e P(Q), p>n, and
(w'-'l-%o We have for 'c Q:

(40) ha | £ () [ £l o+ lu 111’2] ,

[cl,t-“(ﬁ')Jm
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|n | 2 | 3 4 5 |
Cl' .
5 0 0,101 | 0,209 | 0,286 .

Lemma 1. Let ucw'?2(k,)Nc{®)17 (x,) be the solution of

‘agl
(41) -Au = - %

Let n-—2</L<n-2+2J". Then

2
Qu_Ru_ -1 < (n=2)
(42) J %, oxy T dx = o (A)(1 + 25F) o
¢
J -4 J ]
gigir dx * c3 ) g;8; Ox +
K¢ K¢

RQu 2u_ 2
+c3f % B dx+c|u(0)| ]

where ot(.1l) — 1 as /'L-—)(n-2)..
Proof. Put v(x) = (u(x)-u(0)) y(x), Y €D (K,), ¥(x) =

——————

IN

for |xI| = §E, 0=y 1. We have
2 -f
43 2 “ax= | ng 38
Ry

with
(44) [f hihi(l+r-']') dx] 1/2 ¢ [] gigir"" ax |12 &

Rn i Kf

+ cy [j 8:8; dx] 1/2.
Ka

In polar coordinates (employing our notation) we get for v:

(45) fja vgl‘frnldrds—jfmg ?rnldrds,

0 s

where m; = aijhj. Putting p?’ =p - (n-3), p=x’ + iy, x =

=-% [1- @w-2)] , YER), x<x’<0, xZ-7p, c/=w(r&)rp"1

w € £(S) and denoting by
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(46) V(p,19’) = frp'lv(r,qy') dr, Mi(p,&) = _/rpmi(r,&’) dr,
0 0]

Mellin’s transforms of v and m;, we obtain from (45)

(47) / [-p(p?=1)Vvw + Bi,v Qi,w] ds = f [Ml(p’—l)w + My, Bi,w] dSe
s s
1 _
Let us decompose W'’2(S) = W, + Wy, W, = {const} , let v =v +

+ V,, M= M o+ _M2 be orthogonal decompositions, the latter in L,(S).
2 1 1 g ) 2

Put w = - —B- Vl in (47). We obtain
)
p’~1
(48) J Ipl21vy12 as fJ IMy12 as.
S S
Put w = 72. Because we have

(49) (1) 1wl as € [ 3, woy,was,
S S
for w from W, we get in virtue of (48):

(50) j[|p|2|V|2 + 24,Vo;,V]as =
s

2 —
S

Parseval’s identities

oo _ _ _ oo ‘
(51) %&’ijﬁ[Vﬁ + Bi:Vai,V] dy '—‘j (Eivaiv)r'/l’+n_l dr,
0

oo

o o

1 - _ -1 +n-1

Eﬁ-j M;M; dy = j m.,m. T dr,
0

together with (50) imply the result, q.e.d.
Lemma 2., Let ve[wl’g(Ka)__lm be a weak solution to the linear
system

PV, Y J Ry
rs __ T S = r__'.r
(52) j aij 3%; %xj dx = hi eER dx,
Ky K¢

= r
al§ = a3] € L (Kq),



296

2 < . rs¢r¢s < 2
(53) cl'jl -aiinfj-CQIEI .
Let 1 ©be chosen such that (see Lemma 1)

2
oy (A2 s 207y

(54) = > = .
w21 4 (a=2)7
Then
Qv v
(55) sup f 'axr -,3—{1: | x=x4 1 ’de =
X,EK i
(0] £/2 K£
Vv, Vv
Zeqy | sup fh‘-'h’-'lx-x 1"Yax + | =% =L ax].
3 x.cK 171 0 'axi 'axi
(0 It 4 K¢ K¢
Proof. Smoothing h;-:: and axi? by a positive mollifier, we can

suppose Vg [C(l)(Kg)]m. Let us remark that (53) remains true after

mollifyinge Put 2": ek Using the equation (where K(xo,c;) =
= | = < & 12
=1 x=x, )

RV, A f Qv 2V
2'r by _ r _ rs s
(56) f X, 9% dx = g (3% - (81 =% ) e
K(xn,£) K(xn,% 1 J
o? 2 0?2
2 j Ay
r r T
° 2% dx +3" ¢ g4 CE7 dx
K(xg,7)

and the relation

AV . v v 2V
r rs s
(57) f (-:a——' a”ala 'Bx %3 aij?i-g) .
K(x5,5)
-1 cmC Qv, dv A
o x=x5 “ax = ( Tyr0; ) "a‘fg wx; |xmxg ™7 ax,
K(x %)
o,

we get the result (if we let the mollifier’s parameter converge to
zero), taking into account that , ¥ J >0,

(58) Vo (x5) v, (x4) £ §  sup _/ .
xéeK% K(xé,-z-
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'avr ] AV

v v
r -A f r r
TH, A%, lx-xél dx +I/W(J.) ( 5% 5%t v.v.) dx
K¢ i i

1

see for example J. Nelas [23] y Qee€ede

Theorem 4 can be proved by the standard method, starting from
the equations (9) in variations, using Lemmas 1 and 2, and finally
the standard results for the regularity of the weak solution to the
linear systems with H6lder-continuous coefficients, see for example
Se Agmon, A. Douglis, L. Nirenberg [24].

We conclude our explanation with a regularity theorem for systems
of variational inequalities and Signorini’s type unilateral conditi-
ons, see Ge Fichera [25], J. Nelas [__26], Je. Frehse [28], [29].

Let £ be a domain with the Lipschitz boundary 3, 1let

" c30 be apart of 2Q smooth enough. We suppose on I

(59) bUg 2 Yoy T =1,2,000 kZm,

with b, , Y, regular enough. Let 2Q = |-'1 U FZU ", where
I"l, P2, [' are disjoint open sets in A0 . we suppose that there

exists uy€ [‘wl,2(_0_)]m such that brsu:é: Ype Let WLe

el 2™, gelLy(Mul)d®, relL,(Q)]™ Let the rank of
brs(x) = ke Put

> =
(60) K {V'V = uO on r‘l, brsus - '\rr, r =1,2,ee0 k On I—'} .

We suppose that uy€K and we look for u€K such that, for
¥VvEK, we have

dv du
r T >
3%, 9%, ) +j u (v -u,) dx =

1) [ &l (Vu

Q
z jfr(vr-ur) dx + f gp(vy-u,) ds.
Q Mul®

We can answer the regularity question by the penalty method. We put

(62) (ﬂ (w),v) = -j (bgug- V) b4y dS
r
and look for the solutions ué of the equations with penalty.
By a standard difference method, see [26] in detail, we get
Theorem 5. Let F = FCU(F)NQ C F*cF*cQu ', where U(F) is
a neighbourhood of Fe Under our assumptions, provided that
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uwle W3’2(F*)]m, gE[W1’2( r)]m, we obtain

(63) i s c(F) [1 +1ut

I I Y
W22 (m]™ w2 @)™ L))"

1.

luli

+ gl [W3’2(F*)]m

Ml,Z( P)]m +
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