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SOME PROBLEMS IN NEUTRON TRANSPORT THEORY +) 

J.Kyncl, I.Marek, Praha 

1. Introduction. Formulation of the problem. 

Today when many nuclear power stations produce a significant 

portion of the world's electricity, it may be assumed that most 

problems in reactor physics have been solved. Indeed, there are 

mathematical models which function well in the sense that they are 

in good agreement with experimental models of both qualitative and 

quantitative level. However, despite this fact, there remain some 

unsolved problems of both theoretical and practical nature. We will 

show this claim on two basic problems which frequently occur in re­

actor calculations. 

Problem 1. To determine the critical value irQ £ I c[_0f+*>) 

of the fuel enrichment and the corresponding neutron density N in 

reactor body G ; to investigate the numerical aspects. 

Problem 2. To examine the time behaviour of the neutron density 

in particular for t -» oo # 

By the reactor we mean a convex body G where absorption, sca­

ttering and creation of neutron take place. The neutron density N 

is a function of velocity z = (v„t v . v ) , space variables r = 
/ % x y z — 

= (x,y,z; and time t • 

Since any interaction between neutrons themselves is negligib­

le, the models of reactor physics must be linear. Obviously, such 

models apply in other fields too when the particles under conside­

ration do not interact as in the case of neutrons. 

From physical point of view the most rigorous model is defined 

by the Boltzmann linearized operator, that is N satisfies 
d 

(1.1) . -jp£ N = LN + SN + FN 
and 

(1.2) N(r,x,t) = 0 for r e c?G and (n,^) < 0 

where n i s the outer normal, and 

(1.3) LN 2 -v grad N - v jr(z:,v)N , 

(1.4) SN S Jd£'z ZS(^->Z,£) N(£ fv ft) , 

) Delivered by the second author. 
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(1.5) FN 5- J d ^ V V (v') If(v') 7(^z)N(llfi,t) 

and where £ , 4-3, -£-f, ^ and ")( are characteristics of the 
reactor medium with respect to collisions with neutrons; v deno­
tes the length of the vector v . 

Problem 1 is connected with the stationary case of (1.1) in 
which the characteristics £,£ .etc. have to be arranged in such a 
way that the problem 

(1.6) 0 = (L + S + F)NQ, N0(£,£) = 0 

for £ € d G and (&,£) < ° > 
has a positive solution for fixed geometrical configuration of G. 
More precisely, the stationary state depends on some (criticality) 
parameter: L = L(jr), S = S(y),F=F(j) and one has to find a 0"0 
such that the problem 

(1.7) [L(r> + S(/0
 + ^ F ( / ) ] N o = 0 > 

NQ(r,£) =0 for £ € 5>G, (£,n) < 0 

has a nonnegative nontrivial solution N corresponding to ^(7^)= 
= 1 (criticality condition). From theoretical point of view the 
Problem 1 was more or less completely solved (see C23t[33t[53>[203). 
Concerning the calculations there are difficulties connected with 
the fact that the data of most of the models change rapidly with 
respect to space variables. A real reactor situation is such that 
domain G consists of periodically changing subdomains GL each 
of which contains cells with fuel kernel and several shells having 
various purposes. The cells are rather small in the sense that 
when any variant of the finite element method is used the majority 
of elements are then determined by discontinuous data. However, in 
practice we are not interested in the detailed behaviour of the 
differential neutron density; only some global characteristics of 
the solution are needed such as integral neutron flux, parameter 
of criticality etc. In order to be able to obtain such characteris­
tics some appropriate procedures and simplifications have to be u-
sed. A very efficient procedure how to overcome difficulties with 
rapidly oscillating data a homogenization method has been invented. 
The homogenization procedure is an approximate method by which the 
original problem is approximated by another one (usually with res­
pect to space variables) in which the data do not change so rapid­
ly as the original data; the data are in a special way averaged, 
or, as we say homogenized. 
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Some mathematical and numerical aspects of the problem of cri-
ticality and homogenization will be considered in a subsequent pa­
per. In this paper Problem 2 will be considered in detail. 

2. Fundamental decay mode and asymptotic behaviour in time. 

In order to investigate the asymptotic time-behaviour of any 
particle distribution N , we examine in more detail the Boltzmann 
operator A == L + S + F defined by (1.2) - (1.5)« We remark that 
F = 0 if the medium under consideration is nonmultiplying (a mode­
rator). Let Y be any Ir°(G x R ,w) for p € (!,+ <*>), where 
w ^ 0 is a suitable weight function. 

It is known that L is an infinitesimal generator of a semi­
group T(t;L) of class (CQ) and that 

||T(t;L)|f ^ a"*** , 
where 

A* = inf {v £(r,v) : v €R 3, £ £R 3, v = 1*1 }. 

Since both of the operators S and F are bounded, we see that 
A is an infinitesimal generator of a semigroup of operators 
T(t;A) of class (CQ) (C6 , p.403, Th.l3«2.l]) . The semigroup 
T(t;L) can be written explicitly by integrating the corresponding 
first-order differential equation, and we can conclude that T(t;L) 
is a semigroup of positive operators, that is, T(t;L) leaves inva­
riant the cone of elements in Y with nonnegative representatives. 
Since the operators S and F are defined by nonnegative kernels, 
the semigroup T(t;A) is also nonnegative ([6 , p.418, Corolla­
ry 4]). 

Moreover, since the kernel of S is positive almost everywhe­
re, we may conclude that the semigroup T(t;A) is primitive for 
sufficiently large t > 0 , that is, for every nonnegative u € Y, 
u /-* 0 , there is a T u > 0 such that v = T(t;A)u is positive 
almost everywhere for t > Vy' • 

The spectrum &(k) has the following structure: Every A for 
which Re A ~ - A = 0 belongs to the continuous spectrum, i.e. 
CeT(A) o { A :Re A = - X * } . On the other hand, A for which 
Re A >- A*+ ||S + F || belongs to the resolvent set ffl (A) . 

If the body G is sufficiently small, there are no further 
points in & (A) except those in { A : ReAi- A*} (U.JK Hence, 
we must assume that the strip - A * < R e A s -A*+ II S + F l| has 
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a nonempty intersection with o (A) • Let A be such that any ^ 

for which Re A > A Q belongs to the resolvent set p(A), while 

there exists a A.. £ o'(A) with Re A. = A # i 1 o 

It is known that N(t) = T(t;A)NQ , where N 6 Y , is a unique 

solution of the problem ([6, p#359, Theorem 11.5.3]) 

££ N = AN , N(0) = NQ . 

We assume that N is nonnegative almost everywhere and now inves­

tigate the behaviour of N as T -» + oo # 

A standard procedure [19, p»210-213J consists in estimating the 

semigroup operator by using the resolvent inversion formula [6, The­

orem 11.6.1, p.363] CC++&) 

T(t;A)NQ = li* 2J*T ( e M R ( A > A ) N
0
d A » <**»** (Oi *-0> t 

U-AJQ 

where A Q = Re AQ is such that Re ^ ^ ^ 0 imPlies ^ ^ JO (A) . 

For such a procedure we must have complete information about that 

part of the spectrum of A in the region Re A > - ^ • 

We propose a more direct and much simpler approach. We formulate 

it in an abstract way. 

Let Y be a real Banach space, X = Y © iY its complexifica-

tion. Let K C Y be a generating and normal cone. We say that a 

linear bounded operator T €. B(Y) = (Y -> Y) is K-positive if Tx€K 

whenever x € K . We also have a partial ordering in Y defined as 

follows x 6 y4==>y - y € K . Similarly T £ S<=>(S-T)K C K . We 

call an element y € K quasiinterior if x'(y) > 0 for all linear 

functionals 0 ? x'€Y' such that x'(x) =-0 for all x € K ; here Y' 

is the dual space of Y • 

If the cone K is such that the partial ordering of Y gene­

rated by K is a lattice order, that is, sup {x,y] and inf £x,y] 

exist for every pair of elements x and y in Y , we call Y 

a Banach lattice. 

In the following theorems (Theorem 1-3) we assume that Y is 

a Banach lattice generated by a cone K . We shall apply some deep 

results due to F.Niiro and I.Sawashima [16] and H.H.Schaefer [18, 

P.328-333J. 

Theorem 1. Let A be an infinitesimal generator of a semigroup 

of operators T(t;A) of class (CQ) • Let ^ Q be such that 

(2.1) A 6 <^(A) =-> Re A ^ A 0 = Re A Q , 
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and let }\ be a Fredholm eigenvalue, i.e. an isolated pole of 

R(vK1,A) to which there corresponds a finite-dimensional eigenspace 

(2.2) 7CQ = [u 6 Y : (A - A Q D
k u = 0 for some k = l,2,...}. 

Let the semigroup T(t;A) be K-positive for t ~ 0 . 

Then 

(2.3) S'(A) O { A : Re A = A0 } = [A0,..., A g} 

and s ^ t 
(2.4) T(t;A) = H e j [B. + Z.(t)]+ W(t) , 

0=o J J 

where 

(2.5) B.l^ = B]£B.= ^.kB. , B.Z.(t) = Z.(t)B. = Z.(t) , 

(2.6) B.W(t) = W(t)B. = © , j,k = 0,...,s 
J J 

and 

(2.7) lim e~ ° lfw(t)// = 0 , lim t"q+1//Z .(t)// = 0 , 

where q is the order of A Q as a pole of B.(fvfk) . 

Moreover, Brt „ = lim (P- A ) q R( P ,A) is K-positive and ' ofq p ^ A o > o > ' 

hence, if u 6 K, then v = B u j* 0 is an eigenvector of A 

in K : Av„ = A,v • o o o 

Theorem 2. If the semigroup T(t;A) in Theorem 1 is such 

that for every u £ K , u / 0 , there exists ^(ii) ̂ 0 and a po­

sitive integer p = p(u) such that QT(t;A)Jpu is quasi-interior 

with respect to K for t > 17 (u)f then 

(a) s = 0 in (2.3) , B Q > q = BQ ; 

(b) 7C0 = BQY with dim ^fQ = 1 , 

and B0v is quasi-interior whenever v 6 K , v ^ 0 ; i f y £ K 

is any eigenvector of A then y = cuQ = BQv0 , vQ € K , vQ ± 0 . 
Furthermore, 

(.) T(t;A> - .*•* B 0 • « , ) 

with 
-A t 

(2.8) lim e ° //w(t)l/ = 0 . 
t-*°° 

Under the hypotheses of Theorem 2, we consider the Cauchy pro­

blem 
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(2.9) ^ u(t) = Au , u(0) = u Q e K . 

By Theorem 2 we have the following representation of the solu­
tion 

u(t ) = T(t;A)uQ = 
Aftt 

= e B0u0 + W(t)uQ • 

It follows from (2.8) that 

(2.10) lim e ° u(t) = B„u„ • 
t-^oo ° ° 

Thus we have 

Theorem !• The asymptotic behaviour of any solution u(t) of 

(2.9) is non-oscillatory. 

Remark• Let Mf0 be an eigenvalue of A , and M_ the corres-

ponding eigenvector. We see that any M(t) of the form e MQ 

is always a solution of (2.9) with u(0) = M #• Such a solution is 

called a decay mode; a decay mode is called fundamental if M £ K, 
Mo * ° • 

It is easy to see that the normalized fundamental decay mode is 

unique if T(t;A) fulfils the hypotheses of Theorem 2. 

To apply our previous theory we have to show only that the point 

A 0 f the bound of the spectrum ff'(A), is an isolated pole of the 

resolvent operator R(^,A) • We emphasize this fact because a com­

plete analysis of the existence of decay modes and the uniqueness 

of the fundamental decay mode can be made without any further in­

formation about the spectrum of the operator A • This makes our 

approach different from the sort of analysis proposed by others. On 

the other hand, we describe only the peripheral part of the spect­

rum of the semigroup T(t;A) • If we make assumptions involving 

compactness about ST(t;L)S [22] or other closely related assump­

tions, we can give a complete description of ^(A) • Actually, un­

der certain assumptions concerning compactness of T(t^;L)S ••• 

T(t£;L)S it has been shown that every AJJ 6 6^(T(t;A)) for which 

f ̂ f>e"" has the form ^W = eA , where A is an isolated 

pole of R(/^,A) with finite-dimensional invariant subspace 

Wh) = { u : (A - M ) k u = 0 for some k = 1,2,.~} , [21],[22], 

[19]# However, these assumptions are not fulfilled in general, e.g. 

for some models including the case of inelastic scattering in the 
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high-energy range £ll]• 

On the other hand, our theory does not cover the model exclu­

ding the up-scattering. With some minor modifications this case 

can also be considered by our method and the main results, such as 

the final Theorem, remain valid in general. 

We already know that the semigroup T(t;A) is K-positive in 

Y , where K is the cone of elements of Y = Lp(GxR3,w), 1< p <+O0, 

with nonnegative representatives, w = 0 • It follows that R(a,A) 

is also K-posiiive, where a > max(0, ̂ Q) ([6 , Theorem 11.7.2]). 

Let us write A in the form A = L + S 1 + S2 + F , i n which 

S-. includes the elastic scattering and the inelastic scattering 

in high-enargy range and S2 the inelastic scattering in low-ener­

gy range. Since S^ is bounded and S2 and F are compact opera­

tors, we have that 

R(a,A) = RtajL+S-^ + R(a,A) (S2+F)R(a,L+S1) . 

A crucial assumption for the applicability of our theory is the 

fulfilment of the strict inequality 

(2.11) r = r(R(a,A)) > r(R(a,L+S1)) = r± , 

the relation r ~ r^ being trivial. 

Actually, we have 

Lemma. Under the assumption (3»ll) for some a > max (0,- A + 

+ /[s+F/Y ) the point P^Q is a pole of the resolvent operator 

R(̂ c/,A) . 

Remark, We note that the validity of (2.11) follows from the 

compactness of (S+F)T(t;L)(S+F) and similar other assumptions, 

as we have mentioned above. The converse is obviously not neces­

sarily true, as we have mentioned, in the case of inelastic scatte­

ring in the high-energy range. 

Proof of the Lemma. The operator R(a,A) is an operator of Ra-

don-Nikolskii type [14] whence it follows that its peripheral spec­

trum consists of a finite set of Fredholm eigenvalues VQ,«.., V • 

Obviously, 

Vj = a- a. t where Aj £ & (A) , j = 0,...,s , 

| Vjl = r(R(a,A)) . We identify A 0 by setting r(R(a,A)) = J^ # 
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Let R(a,A)y. = V-y. 9 y . ± 0 and l e t b > a . We see that 
J 0 0 o 

o 

Thus, for all b > a we have that 

b - A I =- I b - A Q 

for every 7^ € & (A) . Since b can be arbitrarily large, we con­

clude that A € <f (A) implies that Re A = AQ • Because 

r = r(R(a,A)) G ^(R(a,A)) , the spectral mapping theorem shows 

that 7\Q is a Predholm eigenvalue of A since r has this pro­

perty with respect to R(a,A) • This completes the proof of the 

Lemma. 

The conclusion of the Lemma implies that Theorems 1-3 apply 

to those cases of neutron transport where the assumption (3*11) 

holds. In our opinion, this is the case in most of the models used 

until now. 

As a consequence we have the following final result. 

Theorem. If (̂ (A) ̂  {A : Re A > - A*} / 0 , then there exists 

exactly one normalized fundamental decay mode I A 0*-O and we ha­

ve that for every solution N of 

§£ N = AN , N(0) = NQ £ 0 , 

lim f/e ° N(t) - cM0 '( = 0 , 
t->oo ° 

where c > 0 is a constant independent of t , 

More precisely, cMQ = PNQ , where P is the residue of the 

Laurent expansion of R( £f,A) about the point A Q • 

We remark that this last theorem gives a solution to Problem 10 

of Kaper's Collection of problems in L7J. 
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