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ON THE ITERATIVE SOLUTION OP SOME NONLINEAR 

EVOLUTION EQUATIONS 

H. Gajewski, Berlin 

The purpose of this paper is to show by three examples of non­

linear evolution equations arising from mathematical physics how a 

priori estimates can be used to establish globally convergent ite­

ration processes. An important feature of these iteration processes 

is that one proceeds by solving linear evolution equations with con­

stant coefficients. 

We shall start our discussion with Burgers' equation. As further 

examples the spatially two-dimensional Navier-Stokes equations and 

the nonlinear Schrbdinger equation wiU be considered. We shall con­

clude with some remarks concerning the numerical realisation of the 

iteration processes. 

At first we introduce some notations. Let X be a Banach space 

and S=[,0,T] a bounded time interval. Then C(S;X) is the Banach 

space of continuous mappings from S into X provided with the 

maximum norm. L^(S;X) , 1=p=oo f denotes the Banach space of Bochner 

integrable functions u:(0,T)--*X with the norms 

(|||u(t)||£dt ) 1 / p , 1-$p«oo f esssup||u(t)|U , p=co. 
S A tes A 

1. Burgers1 equation 

Let H=L2(0,1) , V=HQ(0,1) and V*=H~1(0,1) be the usual spaces 

with the norms |.| , ||.|| and ||. || , respectively. We consider the 

initial-boundary value problem 

u. - ̂ u v + uu v = f in (0,T)x(0,1) , 
b XX X 

( 1 . 1 ) n 
u(0,x)=a(x) , x*(0,1) , u(t,0)=u(t,1)=0 , t€(0,TJ . 

Here the subscripts t and x indicate partial differentiation, >) 

is a positive constant. We suppose up to the end of this section 

that 

(1.2) f 6L2(S;V*) , a€H . 

Then, as is well known, the problem (1.1) has a unique solution 

ueL2(S;V)nC(S;r 

mate (cf. /}/) 

ueL2(S;V)nC(S;H) with ut«.L
2(S;V*) satisfying the a priori esti-



111 

<1-3) IIUHC(S;H) " r • p 2 = ,a,2+^,|f|lL2(S;V*) * 

For constructing the solution of (1.1) Uarasso /1/ proposed the 
following iteration procedure 

ut ~*uxx = f " uJ"1uJ'1 • J-1.2..... u°=0 , 
(1#4) u^(0,x) = a(x) , uj(t,0) = u(t,1) = 0 . 

A corresponding method has been used by Fujita and Kato /2/ as a 
means of proving existence and uniqueness theorems for the Navier-
Stokes equations. Carasso /I/ stated the following sufficient con­
vergence condition for (1.4) 

(1.5) ( ^ ) 1 / 2 (Hall + fllf(t)||dt)< 1 . 
S 

Possibly this condition could be weakened but it cannot be replaced 
by a global condition because counter-examples show (cf. /1/) that 
the convergence of the procedure (1.4) is in fact only local in time, 
even if the global solution of (1.1) is smooth. 

We want now to show that the iteration method (1.4) can be easily 
modified in such a way that we get a globally convergent process. 
For that we define the projector of H onto the r-ball in H by 

v if |v| = r 
(1.6) Pv = 

r-f, if |v| > r , 
where r is the constant from (1.3). We suggest replacing (1.2) by 

{U7)
 Ut ~ V uxx = f ~ (̂ -1)uJ-1 *i~ 1.2,.... 

u^(0,x) = a(x) , u3(t,0) = uJ(t,1) = 0 . 

The following global convergence theorem holds. 

Theorem 1. Let u be the solution of (1.1) and u°eL2(S;V)nC(S;H) 
an arbitrary starting function. Then the sequence (û ") defined by 
(1.7) converges to u in C(S;H) and L (S;V) . 

Proof. First we note the simple inequalities 

|Pv - P w| = |v-w| , v, weH and M ^ 2 |v| |[v|| , ve V , 

where I • loo --s "the norm in L°°(0,1) . Next we define by 

»<* • 3 <e""t(,,""t"2> • »<k - i«<k* -£( .-<*$,*.> 
norms being equivalent to the basic norms in C(S;H) and X=C(S;H)r, 
L (S;V) , respectively. Here the function k is defined by 
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k(t) = 2 |(||u(s)Ц
2

 +
l б ( -

2

+
D ) d s 

Now we see from (1.3) and (1.6) that Pu(t)=u(t) for teS. Con­

sequently, (1.2) may be written in the form 

(1.8) u. -vu
 v
 = f - (Pu)u . 

w XX X 

Denoting the sxsalar product in ri by ( . , . ) and sett ing v^u^-u , 
we obtain from (1 .7) and (1 .8) 

(^ Iv̂ l 2 ) t + Vl^l l 2 = l(PuJ~1uJ"1 - Pu-ux , v j ) | 

= |(PuJ~1vJ~1 + (Pu^ - 1 - Pu)ux , vJ )| 

^ ( |Pu j - 1 | Hv3"1!! + |Pud~1 -PulHull) I v V 

= (rllvJ'-1!! + |v^"1| ||u||) Iv l̂co 
s § l l v J - 1 | | 2

+ - ^ 2 | v ^ <

2 + l | | u | | 2 | v J - 1 i 2 + 2 | v ^ | 2 

^l|vJ-1||2 + l||u||2|v^-1|2 + 4(-^+1)|v3|l|v^|| 

^l|vJ-1||2 + J||u||2|v3-1|2+f(f2+l)V|2+iUv^||2 

or 
( | v J | 2 ) t + VHv^|2 = i H v J - 1 | | 2 + l | | u | | 2 | v ^ 1 | 2 + ^ + 1 ) 2 | v ^ | 2 

i i [ ^ - 1 | | 2 + k L ( ^ l v J - 1 ( | 2 + | v j | 2 ) _ 

Integration with respect to t yields 

,v
j
(t)|

2
+vJV||

2
ds= }(|llv

;3-1
||

2
+(l|vJ-

1
|

2
 + I|v^|

2
)e

-k
k

,
e

k
)ds 

<ł/l|---1l|-dв
+
-(J|т--

1
l|2

f]c +
 .J|1r-||§fk)(в-î*í-l). 

We divide by e k ( t ) and obtain 

e - k ( t ) ( l M ( t ) | | 2 + J | |v^ | | 2 ds) = jMv-"1nl f k + ^| |v j | |g f k 

and hence 

ii"Jnl,k-liH-1nlfk^... - <i>Vn|fk • 
Prom this our theorem follows. 

Remark 1.1. Of course, the constant r in (1.6) can be replaced 
by any other C(S;H) a priori estimate for u . So in the special 
case f=0, a Le (0,1) one can set r= || a|ioo because of the maximum 
principle. If f€ L (S;H), it is easy to see that r= lf2(|a| 4-

+ V2f|fBL2(S|H)) 
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is a suitable bound. It is worth noticing that both these estimates 

are independent of the viscosity v> 

Remark 1.2. Evidently, there are other possibilities to introduce 

a projector like P in order to obtain a globally convergent version 

of the Kato-Pujita method. However,the operator P defined by (1.6) 

turns out to be favourable with respect to the numerical realisation 

of the iteration process. 

2. The Navier-Stokes equations in two space dimensions 

p 
Let G be a bounded domain in R with smooth boundary T and 

let L2(G) , HQ(G) , H
2(G) , H~1(G) be the usual Hilbert spaces. 

We set 

H= (H0(G))
2 = HQ(G)*H0(G) , V = (H

2(GWlJ(G) ) 2 , V*-=(L2(G))2 

and use again the symbols |.( , \\.\\ , ||. (I to denote the norms in 

H , V and V* , respectively. 

Let us consider the spatially two-dimensional Navier-Stokes 

equations 

u. - vAu + U'7u + vp = f > V*u = 0 in G , 
(2.1) t 

u(0,x) = a(x) , u|- = 0 . 

Throughout this section we assume that 

f € L2(S;V*) , a €H , V-a = 0 . 

Then (cf. /5/), (2.1) has a unique solution (u,p) with 

U C L 2 ( S ; V ) A C ( S ; H ) , uteL
2(S;V*) , peL2(S;V*) 

and the following a priori estimate holds 

(2.2) IMIG(S.H) "
 r ' p2 = c( ' al 2 +H fH 22, *x> ' 

^vb,ri; L^(S;V*) 

where the constant c depends only on V and G . 

We now turn to the formulation of a globally convergent itera­

tion procedure for solving (2.1). To this purpose we introduce the 

projector of V* onto the r-ball in V* which is defined by 

v if Hvll̂  -* r 

wi i f » v | k > r • 
where r is the constant from (2.2). Now we are able to present 

the announced iteration procedure 
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u<j. - >}AU^ +Vp^ = f - u ^ . p y u ^ 1 , V-Û  = 0 , -j = 1,2,..., 
(2.3) * 

uJ(0,x) -= a(x) , uj I = 0 . 

Theorem 2. Let (u,p) be the solution of (2.1), u°€ L2(S;VV>C(S;H) 

an arbitrary starting function and ((u%p*M) the iteration sequence 

defined by (2.3). Then the following assertions hold 

ud - > u in C(S;V*) and L.2(S;H) , V P3 -» VP in (L2(S;H~1)))2 

Proof. We need the following well known inequalities 

HPv-PwII^ -Mbr-wlL f vfw6V , l|v|l2 -* c||v|k |v| , vdH . 

Here the constant c depends on G andVj|.|- denotes the L^(G)-

norm. Let (.,.) be the scalar product in V*. Then, using Pyu= yu 

and setting v*' = u*' - u , we find from (2.1) and (2.3) 

(^l|vd|^)t+V|v
;j|2 = |(vJ"1 Pvu3"1 +u-(PvuJ"1-Pvu) , v J)| 

= (HvJ-1|l4llPvu^
1l^ UuiyiPvv^^-Pvul^Ml^ 

* MHv3~1«4 +l|wJ-1^)||vJ||4 

= O ^ H T J - 1 ^ 2 ! ^ - 1 | 1 / 2
+ | T J " 1 1 ) M |C/ 2 |TJ | 1 / 2 

* i(|,v3-1 j2+ |v^l
2)^(l||v^1^2

+lM||
2 ) 

or 

Now we introduce the norms 

I M , C k = ^ ( e " k ( t ) » l v ( t ^ » I H l I , k 4 l H l § , k + V a u p ( e - k ^ ^ | v | 2 d s , 

being equivalent to the usual norms in C(S;V*) and X--C(S;V*)r* 

L2(S;H) , resp< 

we then obtain 

L (S;H) , respectively. Here k(t) = c2t . As in the proof of Theorem 1 

iiv3iix,k * <i> Viix ,k 
and hence u3 —> u in C(S;V*) and L2(S;H) . Using (2.1) and (2.3), 

we conclude from the last convergence statement firstly ut£ —> u^ 

in L2(S;H~1(G)) and after that v p . —*vp in L2(S;H~1 (G)). 

3. The nonlinear Schrodinger equation 

In this section L (0,1) denotes the space of complex--valued 

quadratically integrable functions on (0,1) . We set 

H = L2(0,1) , V = { vtH | v x«H , v(0) =- V ( 1 ) } 

and use now the symbol ||. || to denote the norm in H f whereas |z| 
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is the modulus of the complex number z . 

We consider the nonlinear Schrodinger equation with spatially 

periodic boundary conditions 

iut + uxx + k|u|
2u= 0 , i2 = -1 , 

(3.1) 
u(0,x) = a(x) , u(t,0) = u(t,1) , ux(t,0) = ux(t,1) . 

Here k is a real constant. 

We suppose acV . Then (3.1) has a unique solution u€C(S;H)n 

L°°(S;V) with uteL°°(S;V*) . Moreover, u satisfies the a priori 

estimate (cf. /4/) 

Ilia || _ =* r , 
L"((0,T)*(0f1)) 

where 

r2 = ||aI|(||a||+2(lk|!Hi4(1+lk|l|a||2)+ |2|laxl|2-k||a||4
4 | ) 1 / 2 ) . 

h \0,1 ) 

This time we choose as the operator P the projector of the complex 

plane onto the r-circle, i.e. 

z if |zl -=? r 

*,fl if 'z'>r-
Now we can formulate a globally convergent iteration method for 

solving (3.1). 

i u t + uxx = -k|Puj"1l2u^1 , a = 1,2,..., 

(3.2) . . , . . 
uJ(0,x) = a(x) , uJ(t,0) = uJ(t,1) , ux(t,0) = ux(t,1) . 

Theorem 3. Let u be the solution of (3.1), u°€L2(S;V)nC(S;H) 

an arbitrary starting function. Then the sequence (u*0 defined by 

(3.2) converges to u in C(S;H) . 

The proof of this theorem as well as proofs of further conver­

gence statements concerning the iteration process (3.2) may be found 

in /4/. 

4. Numerical realisation 

The iteration processes under consideration reduce the problem 

of solving nonlinear evolution equations to the successive solution 

of sequences of linear evolution equations with constant coeffi­

cients. Nevertheless for numerical purposes it is necessary to com­

bine them with other approximation methods. We have made some good 
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numerical experience by combining iteration processes with a time-
discrete Galerkin method. Let us briefly discuss this point. We con­
fine ourself to Burgers1 equation and use the notation introduced 
in section 1. 

As basis functions we choose 

1^ = h-^x) = fiTsinllTx , 1=1,2,... . 

The initial value a has then the representation 

a = J_2 a-j. h-j , a-̂  = f a h-, dx . 

We set u = l_Jc, h*. and determine the coefficients c, = c,(t) 

according to Galerkin1s method by the following system of nonlinear 
ordinary differential equations 

1 P 
cl + pl cl + I ( un ( un }x " f ) h i d x = ° t P1 = ̂ (11T) , 

(4.1) 
0^(0) = a^ , 1= 1,...,n 

Taking into account (1.2), it is easy to show that the sequence 
(u ) of Galerkin approximations converges to the solution u of 
Burgers1 equation in L2(S;H^(0,1)) and C(S;L2(0,1)). 

In order to calculate u we use an iteration process like (1.7)< . n • n • * 
We set u^ = Z7 ci *-i and determine the coefficients ci = c4(t) 
by the system*"5 of linear ordinary differential equations 

«.}>' + P - e } - £ ( f - P u J ^ C u J - ^ ^ d x , j = 1,2,... , 

c3(0) = a-, , 1 = 1,.. .,n . 

The solution of this system is 

(4.2) c^(t) = exp(-p1t)(a1 + |exp(p1s)P^ri) ds) , 1=1,...,n , 

where 

pj"1(s) = P 1 ( B , U ^ "
1 ( S ) ) 

and the function ^(s,.) is defined by 

FT/S-V) = /(f(s)-vv x)h 1dx 
iŕ |v( í r 

2 
Here \.\ denotes the norm in H = L (0,1) and r is the a priori 
bound given in (1.3). We see that in order to get u^ from u**~ 
we have only to calculate definite integrals.This can be done by 
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using suitable rule3 for numerical integration.In our calculations 

it turned out to be adventageous to divide the time interval in smal­

ler intervals Sk , S = AJ. S, 9 and to carry out the iteration suc­

cessively in S, , k =1,... ,m . 
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