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ON THE BRANCHING OF SOLUTIONS AND SIGNORINľS PERTURBATION PROCEDURE 

IN ELASTICITY 

G. Capriz, Pisa 

1. Introduction 

Let us formally express the traction boundary problem for large 

deformations of a hyperelastic body in the neighbourhood of a 

placement & under initial stress S as follows 

- div S(Vp) = b in & , 
(1.1) 

S(Vp)nQ = s in >feQ ; 

where b is the force per unit volume and s the surface traction; 

p is the position vector in the equilibrium placement & and 

S is the Piola-Kirchhoff stress tensor,which is expressed by a con

stitutive relation in terms of the gradient ^p of p; n is the 

unit vector normal to the boundary <)£> of & . 
o o 

Assume that B (with position vector p ) is an equilibrium 

placement under loads (b , s ): 
o o 

- div S ( V P Q ) = bQ in )B0r 

S(Vp)n = s in } & , with S(Vp )• S . 
o o o o o o 

Then the perturbation procedure of Signorini starts from the 

assumption that b and s are dead loads (i.e.,they do not depend on 

the placement) and can be expressed as power series of a parameter 

09 

"" Һ 
Һ ' 

(1.3) b - b o + x h £
h b h , s = s o + r h £

h 

1 1 

proceeds with the hypothesis that the solution p of (1.1) is itself 

developable 
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d.4) P = P 0
+ f h £ h \ • 

and admits that the convergence properties of (1.4) are such that u 
n 

is the solution of the appropriate linear problem that can be deduced 

formally from (1.1), (1.4). Because of the non-linearity of the depend 

ence of S on Vp, the boundary problem to be satisfied by u al

though expressed in terms of an operator which does not depend on 

h, involves "modified" extra loads(b , s, ) 
h h 

-divS0O= b*, in )& ; 
h n o 

S D V l n = s* in?>& , h = 1,2,... 
h o h o 

(1.5) 

Here H, = Vu : *& is the fourth-order tensor of the elasticities 
n h 

d.6) S [ H ] = V s | 7 p = 1 £H1 ; 

and the starred loads are defined as follows 

(1.7) b* = b + divg. , s* = s. - £. n , 
h h " n n '^h o 

where ^ can be specified in terms of p and H (k= 1,2,... h-1) 

(with ^1-s0) because it is the quantity entering the expansion 

(1.8) S(7pU))=S o +g h(Vsl V p = 1CH h>^ h(P o;[H rJ
h- 1))£ h. 

When fi is a placement at ease (i.e., S s?0), one can specify 
o o 

conditions on the shape of & and on the function S(7p) so that, 

when £ is small enough, problem (1.1) has a solution of type (1.4), 

provided certain quantitative conditions on the loads are satisfied 

(Stoppelli's theorem). Signorini was mainly concerned with those 

side conditions which have an interesting mechanical interpretation 

and some curious aspects [ll; in £3 , 4J the conditions are also ex

plored at length but without introducing assumptions on S . Here the 

hypothesis that the loads are dead is also abandoned; furthermore , 

in Sect .4,a dynamic analysis is pursued which clarifies the signifi

cance of certain failures of a purely static study . 
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2. Fredholm conditions. 

We abandon here the hypothesis that the loads (b, s ) are dead 

loads and do not exclude that they are of the "follower" type: 

(2.1) b - b (p,Vp) , s = s (p,7p), 

so that the developments (1.3) must be substituted by 

(2.2) 

where 

ь=bo+Z h£Һ(ъ[нhl+вv V P Q , VP0.i\tf"1Ли..ï"1>) . 

Л h бh(c*[нh> Z V V P O , VP^.KiГ-WГł' s=s 
r. 

( 2 . 3 ) 

Ъ = grad „ b , B = grad b , 
V p P 

QЃ = grad л s , 2. = grad s . 
Vp p 

At the same time the systems (1.5) become 

(2.4) - d i v S D y - 1э[Hh1 - Buh = b * , in ÌS\ , 

SCH ]n - Q>[H I " 2-Uh = s * , i n W , 

with 
h o - n- 'h h ' l n 

-* 
b h = 1>h + d iv £ h , sh*= S h - ^ h П o . h = 1 , 2 , . . , 

Apart from these qualifications which, at this stage, are of a 

formal character, a remark of substance is in order here. The loads 

(b, s) of problem (1.1) are balanced in the final placement 

J b(p, Vp) d(vol) +j s(p,Vp) d(surf) = 0 , 

©o >®o 

(2.5) (

 u

 f 

\ pxb(p,7p) d(vol) +l pxs(p,Vp) d(surf) = 0 , 

\ J
^ o 

but these relations do not impose restrictions on (b,s); they are 

simply an expression of mutual consistency of the (data, solution) 
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pair.Nor need they be verified when p is reduced to p in them;though 

the first reduced one must be true in Signorini's case.Further,if 

S =0, the choice of j& is open among isometric placements; then Da 

Sylva's theorem assures us that among those placement there exists 

at least one where the moment is balanced. Such freedom in the choice 

of (6 , however, is absent in the presence of follower loads or when 

S J* 0. In conclusion the balance of loads (b, s) in the starting 

placement either can be trivially assured, and then it corresponds 

to a conventional choice of ft among the many open choices, or 

must not be required. 

Let us consider now the sequence of linear problems (2.4) . The 

corresponding homogeneous problem 

(2.6) div S>[H]+ 1D[H3+ Bu = 0, S M n - ffDO- X u = 0, 

in S>o in "^&o p 

admits a set *f of non-trivial solutions: for instance it is well 

known that in the presence of dead loads and when S 50,^contains 
o ' 

the set J of all infinitesimal isometries. In any case the theorem 

of alternative states a prerequisite for the existence of solutions 

of (2 

(2.6) 
/» / 

(2.7) J v.b*d(vol) + v.sd(surf) = 0 , V v € ^ . 
\ h J>*o h 

We will consider here only the case when ^f is finite-dimensional 

and non-trivial; after having chosen a basis for ^f (v. (i= 1,2,...r); 

r = dim-J ) one can write (2.7) as a set of r equations for (b , s ). 
h h 

Notice also that the solution of (2.4) is never unique: adding to any 

solution u, a linear combination of v yields again a solution. This 

fact is the basis of the remark that the character of (2.7) for h=1 

is completely different from that of (2.7) for h > 2. 

In fact, let us examine first the case h=1; then E « &„ (p ,Vp )# 

— * ° ° 
s„ = &A (p ,Vp ) and therefore 1 1 o o 

ic —<f 
of (2.4): the loads (H, , s ) must be orthogonal to all solutions of 

h h 
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(2.8) J v. V 1 d(vol) + J v. |8f1 d(surf) = 0 , V v £ €>* f 

&o *feo 

represents a condition which is absent in the statement of the origi 

nal non-linear problem and is of a technical character for the exist 

ence of solutions of (1.1) of type (1.4). 

Signorini remarked that in His special case, when <-/ = o , (2.8) 

requires the balance of the first order loads in & . This interest-
o 

ing remark is, however, misleading to some extent because it leads 

one to focus exclusive attention on classical balance conditions. An 

example of Ericksen and Toupin and an example of Bordoni (see p* 3 , 

Sections 7 and 11) shows explicitly that the "balance conditions" 

(2.8) required of the first-order loads are much deeper than the 

classical ones. 

3. An analysis of branching of solutions* 

Suppose for the moment that (2.8) is satisfied, and a solution 

EL of (2.4) for h-=l has been found. Then system (2.4L admits also a 

whole set of solutions 

<3-1) ui = s i + £ . k Y * V 

k 
where y are r arbitrary real parameters. On the other hand, we have 

from (2.7) for h=2 the conditions 

Ifeo V
 ( V d i V ^2)d^°1>^Bo

Vk- ( *2" ^ 2
no ) d ( s U r f> = : °' 

k = 1,2, r; 

here \ , s , £L depend on (p ,Vp and) u1 , Vu ,which can be express 
•b «b £m O O I I 

ed in turn through (3.1). The dependence on u , 7 u is algebraic 

of degree 2, so that finally we come up with an algebraic system of 

degree 2 for the coefficients *J> : 

r Y 

(3-2) °k,.+ 2-i KiVj + 2L-- ^ Vt V?= ° 
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here v , V, , w have complicated expressions. For instance, 
K,1 Kl KiJ 

in the case of dead loads one has 

Ck.,- L <V: -2 
k" ( V S |vp-1-

:Vu^)-Vul3)- Wk))d(vol) + 

.Í 
(3.3) 

s,.v, d(surf), 

\,i=-J^((v2Mvp=1tVV)^viJ)-Vvkd(vol), 

W "i iQ
((V2 S^^LW^jCW.-lJ.Vv.dfvol). 

The set of r algebraic equations (3.2) may be used to determine the 

parameters ^ -Th^re are cases when such determination can be achiev 

ed and is unique;for instance, in Signorini's case all coefficients 

0^ . vanish because in that case the tensor V S has certain proper 

ties of symmetry, whereas Vv. is necessarily skew as v must re

present an infinitesimal isometry;then the system becomes linear and 
k -u 

the parameters -^ can be explicitly given, if det Q ? O (a condi

tion which is equivalent to the requirement that the first order 

loads do not admit of axes of equilibrium)• 

In general the search for real solutions of (3.2) is more deli

cate and the variety of situations reflects the complexities of the 

cases of branching of solutions in the original non-linear problem. 

Suffice here to remark that the apparent indetermination observed for 

u. occurs also for all u(h> 2) and that conditions (2.7) for h£ 2 
1 h "" 

can be again invoked to overcome such indetermination. On the other 

hand there are cases where (3.2) cannot be satisfied at all; then the 

solution of (2.4) which seems at stage 1 as a legitimate approxima 

tion of first order to a solution of the non-linear problem (1.1) 

must be rejected on the strength of the Fredholm conditions regard

ing stage 2; a similar discrepancy may occur at any stage. We devote 

therefore the next section to an interpretation and an analysis of 

these cases of "incompatibility". 
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4. Reformulation of the traction problem in elastodynamics. 

Within the limits of a static study, the rejection of an alleged 

approximation of h-th order because of the failure of the Fredholm 

conditions at stage n+1 is absolute. Yet we can still give some sig

nificance to that approximation,^relying on the fact that problem 

(1.1) can be considered as a special case of a more general dynamic 

problem ( y, density in &Q) 

- div S ( V p ) = b - p p , in & , 
(4.1) ° 

S ( 7 p) n - s , in 2>£> , 
o o 

which requires the assignement of appropriate initial conditions. 

As we shall see, we will be able to interpret the developments of 

the preceding Sections as the search for such initial conditions 

having special properties; our analysis will,at the same time, lead 

to the complete specification of an "acceptable" approximation 

(necessarily dynamic) of order h+1. 

In fact, suppose that one of the initial conditions to be attach 

ed to (4.1) requires the vanishing of the velocity 

(4.2) P|t=0 = 0 in *>o; 

and try to determine p I as a function p so that no motion en

sues: 

P3P, Yt. 

Imagine that determination to proceed in successive stages of approx 

imation, corresponding to the specification (2.2) of the loads. 

If b—b , s == s , one solution is, by hypothesis, p = p . When 
o o o 

(b,s)^(b , s ) , to start the process at all, (h , $ ) must satisfy 

(2.8) as we have already remarked. 

But suppose for a moment that condition (2.8) is contravened; 

then, the following technique may be used to explore the main aspect 
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of the ensuing dynamic phenomenon, and to provide for it an approxi

mate description . 

Multiply scalarly the members of 

divS(Xl+ 1O>IH3+ BU - V + p u = 0, 

5 M n o -tfdd-Zu - o^ = 0 , 

by v. (where,as before, v form a basis for CP); integrate the re

sult respectively over & and "b © and sum. Finally try to solve the 

resulting global equation choosing for u the expression 

(4.4) u * = I k -yk <fc> v 

It is sufficient for the functions -y (t) to satisfy the ordinary 

differential system 

r 

(4.5) I k J i k 7 o =*i ' 

where the constants J are generalized coefficients of inertia 

(4-6) Jllr = / fvi.vk d(vol) , ik '«V 
m. are generalized resultant forces 

(4.7) m = | \ . v d(vol)+| £ . v d(surf), 

T~o X 
In Signorini's case, when ̂  = 0 , eqns (4.4) provide linear approxima 

tions to a rigid body motion of 1& ; in general, they describe a much 

more complex movement of our body: 

(4.8) u* = l (f ksvk((j)
Skms))t

2 . 
1 

At this point it is possible to return to (4.3) and determine u -u 

solving a compatible static boundary value problem where the loads 
. r ""1 sk 
H " ? ^ k V k ^ ' J* m *' *1* i n v o l v e a n aPP a r e n t body force. 
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We have dealt in some detail with this almost trivial "case of 

incompatibility" because it is a simple model for slightly subtler 

cases of higher order. For instance, suppose that (2.8) applies,so 

that a solution of (2.4) for h = 1 exists, but (3.2) has no real so

lutions in -y ; then one must return to the dynamic system 

div S[H]+-b[H]+ Bu - b*+ p u = 0, 
(4.8) 

SDflh - 6[H]- lu - s*= O, 

and proceed as before to obtain a differential relation of the type 

(4.5), where now the generalized resultant forces are 

mi = J*. ( ^ 2 * v i
+ ^ 2

r H i ; , # V v i ) d(vol) + 

no 

(4.9) f 
1 +. £ 0. v. d(surf). 

An acceptable, necessarily dynamic, approximation to (4.8) is 
*Jr k 

a new u of type (4.4) with A/ , solution of (4.5), but with the 

specification (4.9) for m.? plus a time-independent solution of a 

static problem involving the appropriate apparent body force. 

5. Conclusion. 

Signorini's perturbation method is a special case of a general 

technique, particularly adapted to a study of stability and branching 

phenomena in hyperelasticity. The interpretation already advanced£2] 

of the phenomena of incompatibility discovered by Signorini can be ex 

tended to apply to more general cases where the ground state is 

stressed and follower loads are present* In particular the well-

known arbitrariness in the choice of amplitude of the buckled shapes 

within the first approximation can be interpreted either as a tempo

rary freedom sOon to be mitigated by conditions of compatibility of 

higher order systems or as a real scope in the choice of initial 
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placements within the class of placements whence a motion begins 

where the acceleration is of higher order. 
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