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ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS 
AND ORDINARY DIFFERENTIAL EQUATIONS IN BANACH SPACE 

L. NIRENBERG, New York 

The theory of elliptic boundary value problems in bounded regions is rather well 
developed, but in infinite domains these problems have not been studied so intensi­
vely. This is a report of some work with S. Agmon on elliptic (and parabolic) differen­
tial equations in an infinite cylinder. 

The noncompactness of the region introduces some new features; for instance the 
well known statement, that the set of square integrable solutions of a homogeneous 
uniformly elliptic equation satisfying reasonable boundary conditions is finite dimen­
sional, is not true in a cylinder. A counterexample is easily constructed with the aid 
of an example of A. Plis of a homogeneous elliptic equation with nontrivial solutions 
having compact support. In case the elliptic problem in the cylinder is invariant under 
translation (parallel to the generator) P. D. Lax has proved a general Phragmen-
Lindelof theorem: that the square integrable solutions decay exponentially; it follows 
easily that the set of solutions is finite dimensional. We have extended this result to 
elliptic equations whose coefficients tend to limiting values with sufficient rapidity at 
infinity. 

The paper is concerned with a number of other questions concerning the behavior 
at infinity for solutions of elliptic problems. In studying these questions it is most con­
venient to formulate the partial differential equations in the usual way as an ordinary 
differential equation, in some suitable Banach space X (with norm | |), of the form 

(1) Lu = Au = / , 
i &t 

or as an inequality 

(2) |L«| ^ *(t) \u\. 

Here t represents the variable in the direction of the generator of the cylinder, Ay 

a closed (unbounded) operator in the space, represents a partial differential operator in 
the other variables with coefficients independent of t, and u(t), for every t, takes its 
values in the domain of A, D(A), in the Banach space (D(A) depends on the boundary 
conditions on the cylinder sides). Since the initial value (Cauchy) problem for elliptic 
equations is not well posed the class of equations (1) which we consider does not fall 
into the usual class leading to continuous semigroups; i.e. A is not the generator of 
such a semigroup. 
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Under various assumptions on the resolvent R(X) = (XI — A) * of A we treat the 
following topics in addition to the one on stability mentioned above. 

1) Regularity of solutions of Lu = / . 
2) Asymptotic expansions of solutions of Lu = / i n terms of exponential solutions. 

By an exponential solution is meant one of the form p(t) e{Xt where p(t) is a polynomial 
in t with coefficients in X (X is then necessarily an eigenvalue of A). 

3) Completeness of exponential solutions. 
4) Unique continuation at oo for solutions of Lu = 0 and of (2); i.e., showing that 

solutions which decay very rapidly are zero, and also obtaining lower bounds for 
solutions. 

The conditions we impose on the resolvent R(X) are usually related to those which 
arise naturally in connection with elliptic problems. For such problems R(X) is mero-
morphic in the complex plane, and is regular, and has norm = 0(1/A) as |A| -•oo in 
an angle 

Re X > c , |lm X\ = K(Re X - c) 

as well as its reflection in the imaginary axis. 
The various results are proved using certain standard techniques: Fourier trans­

form, the Paley-Wiener theorem and some complex function theory, such as contour 
deformation, Phragmen — Lindelof theorems and the "three lines theorem". For all 
details as well as illustrations of the techniques see [1], 
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