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FOLIATED GROUPOIDS

Krzysztof Lisiecki

0. INTRODUCTION.

The notion of a groupoid comes from Brandt [1]. In the-
fifties Ch.Ehresmann [2],[3] introduced a development of the
theory of Lie groupoids and, more generally, differential
groupoids. This theory, from the formal point of view, is a
natural extension of the theory of Lie groups. Next,the works
by J.Pradines [12]1,[13] were the landmark in the theory of
differential groupoids. The author associated, with every
differential groupoid ¢,some vector bundle consisting of all
a-vertical vectors tangent to the units of the groupoid ¢,
equipped with the natural algebraic srtructure. This bundle
was called by J.Pradines the Lie algebroid of the differential
groupoid ¢ Can analogy to Lie algebra of Lie groupd.

In the theory of Lie groups and Lie algebras, one of
important theorems is the theorem saying that, for a
subalgebra h of a Lie algebra g of a Lie group G, there is
exactly one Lie subgroup H of G whose Lie algebra is h. In
paper [10] J.Kubarski proved the analogous theorem for Lie
grbupoids and Lie algebroids (see theorem 5.1 of our workD).

The aim of this work is a generalization of this theorem for
a more general class of groupoids than the class of Lie
groupoids, namely, for foliated groupoids over a foliationwith
singularities Cwhich constitute a full subcategory of category
of smooth groupoids introduced by J.Kubarski). .

The present paper consists of five sections. The first and
This paper is in final form and no version of it will be

submitted for publication elsewhere.
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second contain the fundamental notions concerning differential
spaces and groupoids. Especially, an attention was paid to the
properties of a tangent bundle to a differential space,
introduced by A.Kowalczyk [6], and to the notions of a smooth
groupoid and a groupoid in the category of differential
spaces, both coming from J.Kubarski [8].

In the third section, a construction of an algebroid of a
smooth groupoid is described and the definition of an abstract
algebroid is given. ~

Following the idea of definitions 1.6.7 and 1.7.1 [81, in
the fourth section we introduce the notion of a foliated
groupoid over Stefan’s foliation; this term was proposed by
J.Kubarski. While studying the structure of an algebroid of a
foliated groupoid over a foliation, it has been found that
after the pullback of an algebroid of a given groupoid to the
leaf of the foliation we obtain a Lie algebroid.

In the last section we give the theorem on the inducing of
an o-connected foliated subgroupoid C(over the same Stefan’s

foliationd by a foliated subalgebroid.

1. PRELIMINARIES.

Let € be any non-empty family of real functions defined on a
set M. and Ty ~ the weakest topology under which all functions
from C are continuous. We take
1> CA={ﬁ:A——+R; V xeA I xeUer . FaeC (B|ANU=a|AnUDY for AcM,
IR N ?=CR™ . meMy.

The family C is called a differential structure on M if CM=C

C
20 ScC=\¢oCa1C-)....,amC~)) ;A

and scC=C. The pair (M,C), sometimes briefly denoted by M,
where M is a non-empty set and C is a differential structure
on M, is called a differential space [15].

For example, CEm,CatRm)J is a differential space; mor e
generally - for every manifold M, a pair CM,C“EMD) is a
differential space. If Cois a family of real functions on M,
then C:=Cscco)M is the smallest differential structure on M
containing CO and we call it a differential structure
generated by Co [211. If M, 0 is a differential space

and@zAcM, then CA,C .0 is a differential space, too.

A
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A differential space (N,D) will be called a differential
subspace of a differential space (M, [9] if NcM and if, for

each point yeN, there is a neighbourhood Uer. of the point y

D
such that D, =C Then we write CN,D>—(M,C> C(see [15]1, as

welld. ' If UD=éJN ,then CN,Dd will be called a proper
differential subspace of a differential space (M,C).
Let C(M,C> and CN,D> be any differential spaces. The mapping
f:M—5N is called :
1> smooth if geofeC for geD, then we write f:(M,C—C(N,DD,
2> a diffeomorphism if it is a bijection and f and f‘_1 are
smooth,
3> an embedding if f:CM,C)-—)Cf[M],Df[M]

Let CM,C> and (N,D> be differential spaces. We denote by

D) is a diffeomorphism.

CxD the smallest differential structure generated by
<aepr1 ;aeC}u{ﬁnpra;(ieD) where pr: MxN—sM, (X, YD X,
pr: MxN—N, Cx,yD r—y. :
By a product of differential spaces (M,C) and CN,D> we mean a
differential space (MxN,CxD>. One can show that TexD - TeXTp
[16]. The differential space (M,C) is called an n-dimensional
differential manifold [185] if each point from M has a
neighbourhood diffeomorphic to some open subset of the
differential space CRn,CmCRn)). The topology T is then T2.
If C(M,C) is an n-dimensional differential manifold, then there
exists a uniquely determined c®-manifold M such that C¢=¢XCM.
By a tangent vector to a differential space (M,C> at a
point xeM [15] we mean a linear mapping v:C—R such that
vif - @D =v(fD -glxD+vCgd) - f(xD for f,geC. The set of all tangent
vectors to (M,C) at xeM form a vector space denoted by TXCM.C)
and called a tangent space to (M,0) at x.
1.1.Remark. If C(N,D) is a differential subspace of a space
(M,C), and i:N——sM 1is an inclusion, then, for each yeN, a
mapping i*y: TyCN,D)—)TyCM,C) is a monomorphism. We shall
identify '
c1.2> TyCN,D)‘—"_-t*[TyCN,D)]cTyCM.C).
Let CM,C) be any differential space. We put
s17 TCM.C)=>|&-| TXCM.C) C(disjoint uniond,

M
117 n: TOM,C) =M, rlvd=x & veTxCM.C),
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siiizs TC=CscCo)TtM’C) where Co={g°ﬂ; geCriuidg; geC> and
dgCvd=v(gd for veT(M,CD>.

The differential space CTC(M,C>,TCO is called (following
A.Kowalczyk [B61> a tangent differential space to (M,C), and =
- the canonical projection.

1.3. Proposition [6]l. If a differential structure C is
genereted by Co, then a differential structure TC is generated
by the set {g-a; geCO}U{dg; geCo).

1.4. Proposition [6T. TCCxD)=TCxTD.

1.5. Proposition [9]. Let X:CN,D)——CM,C>. Then Ccf. remark
1.10 K*:TCN,D)——eTCM.C). Mcreover, if UeTD is a set such that
CU=DU » then CTC)cn,)—i[U]=CTtDCn,D—1[U] Cn’: TCN,D>—— CN,D>
is the canonical projectiond.

By a vector field on a differential space (M,C [17] we
mean a mapping X: M——TC(M,C> such that noX=idM.
A vector field is called smooth if X:(M,CO——CTCM,CO,TCO.

A wvector field is smooth if and only if XgeC for geC, where
CXgXCyd=X Cg>, yeM. geC. '

For any vector fields X,Y, we define their Lie bracket
[X,Y] as follows : it is a wvector field which at a point xeM
on a function a takes the value XXCYa)—YxCXaD. The set of all
smooth vector fields on C(M,C) is denoted by XC(M,C). This set
form a module over the ring C; moreover, a pair (XCM,C>,[-, - 1D
forms an R-Lie algebra .

Let f:C(M,CO——CN,D>, XeXCM,C> and YeXCN,D>. The vector
field X is called f-related to the field Y if, for each point
xeM, f*xcxx)szCx)' Then we write X ? Y.

1.6. Proposition [22]. If X,X'eX(M,CO, Y,Y’eXCN,D> and
X P Y and X’? Y’, then [X,Y] P [X’,Y’1.
1.7. Proposition [81. The tangent differential space
CTCM,C>,TCO> has properties:
71/ the mappings +: T(M,CaT(M,CO—TCM,CO, C(v,wd FVv+w,

c: RXTCM, QO —>TC(M,C, (ry, VD b= r-v
are smooth, where TC(M,CO®TCM,C) is a proper differential
subspace of TC(M,COxTCM,C) containing only those pairs (v,w)
for which nCv)=nCwd,

»~2 for any number meN, for any smooth vector fields
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Xl.....XmeXCM.C) and for a set UcM C(not necessarily opend ,
such that,for each xeU, the vectors XICx)....,XmCxD are
linearly independent, the mapping

: CUXR™, C <€ CR™D —CTCM, €, TCY, Cx,a) ;—-;z;’i“zlaixicm

a diffeomorphism onto its image.

1.8. Froposition. Let CN,D>——CM,Cd. Then:

717 if XeX(M,(C) is a vector field such that XXGTXFN.D) for
each xeN, then X|NeX(N,D);

Zii7 if X,YeX(M,C> are vector fields such that XXETXCN,D),

YxeTxCN.D) for each xeN, then [X.YJeTxCN.D).

1.9. Definition. By a k-leaf of a differential space (M, we

mean a subset LcM if there exists a differential structure D

on L such that:

717 CL,D) is a differential manifold of dimension k,

727 CL,D) is a differential subspace of (M,CD,

73/ for each locally arcwise connected topological space X and
for a continuous mapping f:X—(CM,C), such that f[Xlc L,
the mapping f:X—CL,D> defined by the same formula is
continuous.

A set L is called a leaf of the differential space CM,C) if
it is a k-leaf of (M,C) for some keN.

1.10. Proposition [81. Let CL,D> be a k-leaf of the

differential space CM,C>. Then '

i if CX,ED is any differential space whose topology 7. is

E
locally arcwise connected, then, for each smooth mapping
f:(X,ED—a(M,CD such that fiXlcl, the mapping

f:C(X,ED—(CL,D> is also smooth,
/ii~ each connected component of the manifold (L,D) is equal
to an arcwise connected component of L in the

)n
c
#1ii/ if the set L is a leaf of a manifold CN,D> and CN,D) is

topological space (M, T

a leaf of a differential space (M,C>, then L is a leaf
of CM,CD.

2. GROUPOIDS - DEFINITIONS AND EXAMPLES.
Originally, the notion of a groupoid comes from the work by

Brandt [1]1. In the sequel, we shall use the notation given by
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N.van Que [14].
2.1. Definition. By a groupoid we mean the system
c2.a> (&,a,3,V, ‘Jconsisting of sets &
and V and mappings o, 3: 3—V, :3%3—3, where 3%%: ={C(g,hd>=dx3
;xg=3h>, fulfilling the axioms:
- oCGH>=ah and [3(GH)=3g for C(g,hdedx*d,
- fCghd>=Cfgdh for C(f,gd, C(g,hd=s®x®,
- for each point %€V, there exists an element uxe§ such that
s17 aux=ﬁux=x, siis h-ux=h when ah=x, ~7iii~/ u_rg=g when f3g=x
C(for each x&V, the element U is uniquely determined and
called the unit over x,
—-for each element he®,there exists an element h_leé such that
s och Y3=ph, pch T o=ah, siis h-h_1=uﬁh . siiis h—i-h=uah
(for each he®, the element h_-1 is uniquely determined and
called the element inverse to hd.

Any equivalence relation R < VxV, V#0, determines a
groupoid
2.3 CR, prllR, pralR, V, D
called a groupoid of the equivalence relation R, in which
Cy-z)-Cx,yd)=Cx,zd for (x,yd, Cy,zdeR.
2.4. Definition. By a groupoid in the category of differential
spaces we mean [8] groupoid (2.8 in which & and V are
differential spaces and the mappings A, f3: eV, u: Ve,
_1:§——+§ and -:3%%—3 (where $%% denotes the proper subspace
of &x3%) are smooth
Groupoid C2.2) will sometimes be denoted by &.

If R is any equivalence relation on a differential manifold
V., then groupoid (2.3>, in which R is taken as a proper
differential subspace of the ¢®-manifold VxV, is a groupoid in
the category of differential spaces.
2.5. Example. Let r be any pseudogroup of smooth
transformations on a differntial manifold V. Then, for each
k=1,2,..., the set of jets {Jif; fel, XEDf>kC JkCV,V). with
the differential structure induced from J (V,V), forms a
groupoid in the category of differential spaces.
2.6. Definition. By a smooth groupoid on a differential

manifold V¥V [9] we mean a groupoid in the category of
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differential spaces (2.2) in which V 1is a differential
manifold and, for each point x=V, the set a—1Cx) is a leaf of
the differential space &.

The set a~1Cx) equipped with a suitable differential manifold
structure is called a leaf of the groupoid & over x and
denoted by §x.

For each he®, the mapping

c2.7> théﬁh——aéah » T+ 7-h,

is a diffeomorphism; moreover , for Cg,hded*®, we have
D oD =D .

h g "gh

2. 8. Example. Let R be any equivalence relation on a
diiferential manifold V. The groupoid of the equivalence
relation R, described above, is a smooth groupeid if and only
if each abstract class of R is a leaf of V.

2.9. Example [9]. Let (2.2 be any Lie- groupoid (see
definition below). Then, for an equivalence relation R for
which ca. 3> is a smooth groupoid, the subgrouipoid
§R=Ca,ﬁ)_1[R] equipped with the differential structure of the
proper differential subspace of &, turns out to be a smooth
groupoid.

By a Lie groupoid [14] we shall mean a smooth groupoid over
a differential manifold V in which:
1> & is a differential manifold,
2> the mappings o and {3 are submersions,
3> the mapping Co,3D:8—— VxV, hr—=Cah,3hd, is a surjection

Cthe transitivity conditiond.

Let 3=(C%,0,/3,V,D and &"'=(3’,a’,3’,V, ’D be any groupoids.
A mapping F:3——3%' is called -a (strong) homomorphism of
groupoids if 71/ &’ eF=a, sii/ 3’ eF=f3, siiis
FCg+ h)=FCg) - ’FCh) when C(g,h)e®x®.

If & and & are groupoids in the category of differential
spaces, then we say that &’ is a subgroupoid of & if &’ is a
proper differential subspace of & and the inclusion i:3'—&
is a smooth homomorphismof groupoids.

All groupoids in the category of differential spaces,
together with smooth homomorphism, form a category. Its full

subcategory is the category of all smooth groupoids.
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Proposition 1.4 implies

2.10. Proposition. Let (2’,C’> be any subgroupoid of a
groupoid in the category of differential spaces (&,C). Then,
for each he®, there exists its neighbourhood Q ¢ & such that
¢2.11> CTC’D 1 =CTC>_-1

cr*d T LQl 7Ll
where n’: Td—% and n: T8——3% denote the natural projections.

3. THE ALGEBROID OF SMOOTH GROUPOID.
3.1. A construction of the algebroid of smooth groupoid.

The notion of an algebroid appeared for the first time in
connection with the investigation of differential groupoids.
Namely, J.Pradines [12] constructed, for every differential
groupoid, a vector bundle whose module of global
cross-sections is isomorphic to the module of right-invariant
vector fields on this groupoid. This bundle - called the Lie
algebroid of a differential groupoid - plays analogous role as
the Lie algebra
of a Lie group. J.Kubarski [9] generalized this construction
to the class of smooth groupoids. The basic elements of the
construction are given below.

Let &=C&,a,?,V:D be an arbitrary smooth groupcid and let C
be a differential structure on 3. We put

13 AC§3:=lJ T & < T$,
xeV ' u " x
2I)p: ACED—V, plvd=x <= veTU §x
%4
On the =set AC3) we introduce the differential structure

equalling C(TCO denoted later by T,C, and obtain some

ACE®Y A

proper differential subspace of T&.
3.1.1. Proposition. The projection p: ACE)—V is smooth.

By an a-field on & we mean a vector field X on & if, for
each heg, XCh)eThéah.

An o-field X is called right-invariant if CDh)*gcxg)=xgh'
g,he? and ag=ph. The set of all smooth right-invariant vector
R

fields on & is denoted by X C#. It forms a module over the
ring c®Vvd> with respect té the natural addition and to the
multipl#cation Cf-X=fo-f3-X, fecatV). By SecAC®) we denote the
set of all global smooth cross-sections of p.

3.1.2. Theorem [7]1. If XeXRCQD. then
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€3.1.3> XO:V——»AC§) y X XCux)is a smooth
cross—-section of p. Conversely, for any smooth cross-section
n: V—ACSD of P> there exists exactly one smooth
right-invariant vector field on &%, denoted by 7n’, such that
(n’> _=n. The mappings
UL N X _eSecAC)
fix an isomorphism of the c®V) —modul es: XRC§D and SecAC3D.
3.1.4. Theorem. The Lie bracket of smooth right-invariant
vector fields on € is smooth and the vector space XRCQD is an
R-Lie algebra with respect to this Lie bracket.
By 1.7 and 3.1.2, we obtain
3.1.5. Proposition [8]. The system CAC®D,p,Vd has the
properties:
/1~ the mappings ;:AC§)$AC§)——»AC§D. Cv,wd —v+w,and

c: RXACED —=AC3D, Cr,vD p—r- v

are smooth,

727 for any number meN, any smooth cross-sections 81,....Em of
p and any set UcV, such that the vectors 51be.....EmFxD are
linearly independent for xeU, the mapping ¢:Ume——»AC§),
Cx.Cal,....am))r—» z?=1aiEiCx3,is a diffeomorphism onto its
image.

Now, in the module SecA(®) we introduce some structure of
an R-Lie algebra.
3.1.6. Definition. For any cross-sections ¢,neSec(d®), we
define their Lie bracket in the following way:
€3.1.7> [g:n] := CLg’,n'13
3.1.8.Proposition [9]l. The pair CSecAcm,[-.-]P forms a Lie
algebra over R. Moreover, the <canonical isomorphism of the
¢®C V3 -modul es XRC§) and SecA(®), described in 3.1.2, is an
isomorphism of Lie algebras.

We define a mapping
€3.1.9 ﬁ*:Acm—frv. V3,0V

Notice that the diagram below is commutative:

a

73

ACED) —— ooy TV
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3.1.10. Theorem [9]l. Any vector field XGXRC§) is f3-projective,
i.e. there exists exactly one vector field YeXdV) with which X
is f3-related. It is the field Y:=ﬁ*oCX)O.

Further, the field ﬁ*of. ¥feSecACd), will be briefly denoted by
ﬁ*f. The following equality is true:

(3.1.11> f‘Cfoﬂ)=Cﬁ*EDCf)oﬁ, ¥eSecAC3D, rec®evd.
3.1.12.Proposition [9]. The mapping Secfi:SecAC3—V, {35,

is a homomorphism of Lie algebras.

3.1.13.Proposition Tol. For right-invariant vector fields
X,Yex®c®> and a function fec® vy,
(3.1.14D [X,foﬁ-Y]=foﬁ£X,Y]+CG*XO)Cf)cﬁ-Y.

3.1.15.Corollary. The Lie algebra SecA(®> has the property
(3.1.16> [[z,f-n]]=f-[[f,n]]+cn*f)cm-n
for §,neSecACEd and fec®cvy .

For a given smooth groupoid &, the system CACED,p,VD is
not, in general, a vector bundle. Proposition 3.1.5 asserts
that it is a vector pseudobundle, according to the definition
bel ow
3.1.17.Definition [9l. By a vector pseudobundle Cover a
differential space V) we mean each system (A,p,.VD containing
differential spaces A and V and surjective smooth mapping
p: A—sV in whose fibres some structure of vector spaces are
defined and the following properties hold:

CiD +: ADA— A, Cv, WD —pv+w, ©: RxA—— A, Cr,vd —r v, are
smooth mappings where A®A={(v,wdeAxA; plvd=plwd> denotes a
proper differential subspace of AxA,

Cii> for any number meM, any smooth cross-sections fl....,fm
of p and any set UcV Cnot necessarily open), such that the
vectors 81Cx),...,EmCxJ are linearly independent for all xeU,
the mapping

¢ VlUme—-——»A, (x,ad — E'in=1aifiCx) .
is a diffeomorphism onto its image.
3.1.18.Definition [9l. By a homomor phism of vector
pseudobundles CA,p,V> and CA’,p’,V> we mean a smooth mapping
+ H: A=A’ such that p’+H=p and, for each xe&V, HIX:Alx——+A]x is
a linear homomorphism of vector spaces.

3.1.19.Definition ([9]l. By an algebroid on a differential
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manifold V we mean the system

€3.1.20> ' <A -]

in which:

1> A=CA,p,Vd is a vector pseudobundle,

2> CSecA, [, ]> is an R-Lie algebra,

3> p:A—>TV is a strong homomorphism of vector pseudobundles
called after K.Mackenzie [11]1], an anchor) such that the
mapping Secy: SecA——X(V) is a homomorphism of Lie algebras,

4> [e.£-n]=f- [£-n]*Cr-£3CEd - n, &,neSecA,fecCVd.
3.1.21.Proposition. For any smooth groupoid ¢2.2> the object
€3.1.22> ACEI=CACB-ELv, [, -], B2

fulfils, by 3.1.8, 3.1.12, 3.1.13 and 3.1.15, the axioms of
the definition of an algebroid.

3. 2. Homomorphisms.

Let cA’,[[-» ] +»#’> and CA,[-.-].»> be any algebroids on a
manifold V. A mapping H:A’—A is called a homomorphism of
algebroids [9] if:

Cid> H is a homomorphism of vector pseudobundles,

Cii) SecH: SecA’—SecA is a homomorphism of Lie algebras,

Ciiid the diagram below commutes

A——H—->A’
v’ e
vV
3.2.1.Proposition. Let §=CC§.C).0(1.[31,V. -1) and

\I/=CC\IJ.D).aa.[32.V, -2) be any smooth groupoids and let F:&—%¥ be
a homomorphism of groupoids. Then F*: ACS®O —ACYD, VI——-)F*CV), is
a homomorphism of algebroids.

‘Proof. Since F o Cx) : ® —>‘~IJ is a smooth mapping between the
leaves of groupoids, theref‘ore F‘*(v)eAC\IO. By the evident
smoothness of l?'* and linearity of F % AC§)X—»AC'IDX yxeV, it is
sufficient to show that: 13 SecF: SecAC®) —SecACE) is a
homomorphism of Lie algebras, 2> yaoﬁ*=y1 where yl:ACQD—-)TV

and ACTID —TV are the anchors in AC®D and ACYD,

rat
respectively.
1> Let ¢eD. For any ueSecACd) and ge®, we have

*C@PeFICEI=CF D Cu’CgIdCPI=CF D> CCD > ¢ ))—CFoD >
H'CPeFICg s’ gtH'Ca ¢ s o< <Py ﬁg“ 3 ﬁg
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=CD Fo >=CD_> F >=D -CF*o

FCgd® uﬁgcyﬂg %’ ECgd ° *uﬁgpﬂg *FC gD M 5=
=C§*ay3’C¢DoFCgD. And so, for £,neSecACd), we obtain
ﬁ*cu:,n])cX)c¢>=Ef,nBCx>c¢oF)=c5'.n']Cux>c¢~F>=

=£7Cu dCn’"CpeFID—n’Cu dCE’CPeFIDI=£ Cu ICCF ond’Cgd oFd+
—n7Cu JDCCF £ Cgd oFI=CF D CECOICCF o)’ ogpd+

x

—CF*)uianDDCCF*aE)’~¢)=CF*oEDCx)CCF*onD'o¢3—

cﬁ*on>Cx>ccE*ogb'.¢>=[cﬁ*°zb’,cﬁ*onJ'JCux3c¢o=
=|I;?*.g ,E*on]]chcw.

~ ~
2> Let veAC3®). Then yaoF*Cv)=Cﬁa)*CF*Cv))=CﬁeoF)Cv)=C31)*Cv)=
=CﬂlD*Cv)=71. .
3.2.2.Proposition. The assignment & —ACED, Fk—»F* is a
covariant functor from the category of smooth groupoids to the
category of algebroids.
3.2.3.Definition. By a subalgebroid of an algebroid
CA.E~.-B,y} we mean an algebroid CA’.E-.-B’,y’j such that A’
is a proper differential subspace of A, and the inclusion
i:A>—A is a homomorphism of algebroids.
3.2.4.Proposition. Let f:C(M,CO0—CN,D> be a smooth injective
mapping between the differential spaces. If, for each xeM,
there exist a neighbourhood U of x in M and a neighbourhood ¥

of the point y=fCx) in N, such that flU:CU,C )—CW,D0 is an

embedding and WnImf=f[{Ul, then f is an embedd;ig. Y

By this proposition and 2.4, we obtain
3.2.5.Corollary. If %’ is a subgroupoid of a smooth groupoid
$, then its algebroid AC®’) is a subalgebroid oflan algebroid

ACED.

4. FOLIATED GROUPOIDS AND FOLIATED ALGEBROIDS.
4.1. Definitions and some properties.

In the sequel, we shall consider smooth groupoids which
fulfil some additional axioms.
4.1.1.Definition. Let F be any partition of V into connected
immersed submanifolds. By a foliated algebroid over F we mean
an algebroid CA, [, ].#> in which:
CFA 13 for each veA there exists a smooth cross-section ¥eSecA
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such that &C(pCvdD=v,
CFA 2> y[Al=TF
CFA 3> the function Vaxer—dimA « is constant on each LeF.
4.1.2. Theorem. For a foliated algebroid over F we have:
F is a foliation with singularities C(in the sense of P.Stefan
[181,01915.
Proof. According to Sussmann’s theorem [20] we need to obtain
the smoothness of TF only, i.e. that
vV veTV 3 XeX(F) (XCrlvdd=vd

C XCF> stands for the Lie subalgebra of XC(V) of all smooth
vector fields with values at TF D>. To this purpose take
arbitrary veTF. Let VeA be any element of A such that yC$D=v.
From CFA 13> we choose some feSecA such that ECpC$)3=v. of
course X:=yo¥ has the property: XCnCvdd=v and XeX(FD.
4.1.3.Definition. Let F be as in 4.1.1. By a foliated groupoid
over F we mean a smooth groupoid & for which: ‘
CFG 13 the family of abstract classes of the equivalence

relation R_={(x,yd)&eVxV; 3 he? Cah=x, h=yd> equals F,

&
C(FG 2> for each he® and veT Cia D) there exists a smooth

right-invariant vector ?ielg X on & such thatXChd=v,

CFG 33 the mappingsﬁxzix—»Lx C xeLeF > are submersions.
4.1.4.Proposition. The algebroid of a foliated groupoid over F
is a foliated algebroid over F, in particular F is a foliation
with singularities.
4.1.5.Example. Any Pradines-type groupoid is a foliated
groupoid C[91D.
4.1.6.Example. Every groupoid of equivalence relation R which
comes from a foliation with singularities F (in particular
without singularities) is a foliated groupoid Cover FD.
4.2. The Lie algebroid A(Q)L.

Let $=CC&,C>,a,3,V,"D) be any foliated groupoid over a
foliation with singularities and let AC®) be its algebroid.
By a construction analogous to the pullback of vector bundles,
we pullback the algebroid AC®) via ‘inclusion i:L—V CL is any
leaf of F). ‘

Denote by A(i)L
with the set of points {C(x,vDeLxAC®) ; 1iCxD=pCvd>. Therefore

the proper differential subspace of LxAC®)
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the differential structure on AC§>)L is equal to
®

cC CLDXCTC)AC§))AC§)L'

4.2.1.Theorem. The system CAC§)L,E,L.Rk), where E:ACQDL-—yL,

(x, V) —v, k=dimAC&> , xeL, 1is a vector bundle over the

|x
manifold L.

Proof. The mapping E is smooth because E=pr1|AC§)L and the
projection prlzLxACQD—yL. is smooth. Let xelL. With the help of

an isomoerphism i o CACED —CACEDD % , (X, VI v, we

L)lx
introduceon ther set CAC@)LDIX
space over R. Let the wvectors {vl,...,vk} form a basis of

ACED o then the wvectors <Cx.v1).....Cx.vk)} form a basis of

CAC‘I‘)L) " There *are cross-sections El,..‘,fkeSecAC§) such

that EiCx)=vi, i=1,...,k. Thus, for each y from some

some structure of a vector

neighbourhcod U of x in V, the vectors 61Cy3.‘..,EkCy) are
linearly independent; moreover, by 3.1.5, the mapping
@: Uka—> ¢CUka)cAC§D, Cy,ad H{‘Ji(=1aifiCy)
is a diffeomorphism.
Now, by means of the cross-sections {"1,... ,Ek of p, we shall

define some cross-sections of ); Put EiCx)=Cx.EiCx)), xeL.,

i=1,...,k. Then Ei:L—’ACt})Lc LxAC®D, xr—-’Cx,fiCx)). are smooth
mappings and the vectors ¢ i Cy>, ye UnL, are lineary
independent, i=1,...,k. We define a smooth mapping

¥ Ur\I_.ka—-;AC§)L » Cy,ad —Cy,¢Cy,add.
It is a local trivialization of the system CACi)L,E,L.Rk).
Indeed, ‘JE'—1 is smooth because ¢>—1 is smooth and the diagram

below commutes:

K —-1 g k
LxAC®d> UnLx¢CUxR > > p " [UNL] ———— UNLxR

Pr, -
@< UxP.k) ¢ :Uka

Now, we shall introduce a structure of a Lie algebroid in

the vector bundle CAC§)L.;—>.L,Rk) by using an auxiliary lemma
whose proof, being very easy, will be omitted.

4.2.2.Lemma. If i:L—V is an inclusion and L is a leaf of the
differential manifold V ¢ see definition 1.9>, then TL—TV is

a leaf of the manifold TV.
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We define ;V:AC§DL—>TL. by the formula (x,VvD |-—>?§*Cv3. It is
smooth mapping. Indeed, y:AC§DL—;TV, y(x, vD=pCx,Vvd, 1is a
smooth mapping from a locally arcwise connected topological
space AC§)L to the space TV with values in TL. By the above
lemma and 1.10, is smooth.
4.2.3.Proposition. For each cross-section EeSecACi)L and each
xel., there exist a neighbourhood U of the point x in L and a
cross—section ¥eSecAC(®), such that ECy)=Cy,f(y)), yeU.

Proof. Let xel.. Take a neighbourhoced W of x in L and
cross—-sections fl,... ,EkeSecAC§), such that LIW—;V is an
embedding and the vectors f1Cy),.. . ,kayD form a basis of the

space AC3$D y for yeW. Let now EeSecAC§) be an arbitrary

) L
cross-section. There are functions aLl :W—R, i=1,...,k, such
that ¥Cyd =£‘; =1a1Cy)EiCy) for yeW. From the equality

al=pi o¢_1 o where p :Wka—oR. Cx,Cal,....ak)D i-—;ai, we obtain

the smoothness of ai, i=1,...,k. Since -L'w—;\’ is a proper
subspace of V, therefore aieCmCVD)w, i=1,...,k. Hence, there
are a neighbourhood U of x in W and functiens SieCwCV). such
that a’|u=a'|U, i=1,...,k. Define a cross-section £:V—AC3),
y.—.z;’i(=1£iCy)fiCy>. Thus £ |U=£ |U. By definition, £<SecAC&D.

Now, we take any cross-sections E,neSecACQDL. By 4.2.3, for
any point xel, there exist a neighbourhood U open in L and
cross—-sections §¢,n<sSecACd), such that EC yI)=Cy,¥CydD and
;;Cy)=Cy.nCy)) for yeU. We can define a bracket
[, ] :SecACad xSecACEd —SecAC®) as follows:
4.2.4.Definition. Put
4.2.5> [[E,B]]LCyJ:=Cy,tz.nJCy)). yeU.

We shall demonstrate thet the above definition is correct.
Take any cross-sections b4 .{‘1 P MMy eSecAC®D such that
ECy)=Cy,ECy))=Cy,L’1CyDD and nCy)=Cy,nCy))=Cy.n1Cy)) for yeU.
By a symmetry of the bracket, the above condition is
equivalent to the following: I[v.n]“U:O provided »|U=0. The
lemma below proves that this condition is fulflled.
4.2.6.Lemma. Let v»,neSecAC®) and v|U=0 for some set U open in
L. Then ﬂ:v.n]“U=O. A

Proof. Let xoeL.. Take an element h°e§x° such that Yo: =ﬁh°eU.
v’ |§x and n°’ |§x are smooth right-invariant vector fields on
. o o
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§xo; moreover, s1/v Ch)=CDh)*thvﬁh)’ 727 n Ch)=CDh)*ﬂhcnﬁh)'

< Ep,nn'ch)=CDh)*ﬁhCEv,n](ﬂh)) for heéxo. By /17,
P - . . .

v |ﬁxo[U]—O. Since CDhD*ﬁh is an isomorphism, therefore, by

s2/, to prove that [v.n]|U=0, it is sufficient to see that
[v,n]’¢chd>=0  feor heﬁ;l[U]. But Ev,nﬂ’(h)=[v’,n’](h). so
[v’,n’]l&x =[u’|§x ,n’l@x 1, thus Ev.nﬂ’]éx =[v’|§x ,n’|§x ]

o o o o o o

. , , -1 -
and, in the end, [u |§x 7 |§x ]|(?x [U1=0.
o o o

4.2.7.Proposition. The set SecACé)L with the natural
operations is a vector space. Moreover, the pair
CSecACQ)L,E~.-BL) is an R-Lie algebra with the property

4. a._si Ef‘-g.5£L=f‘ [[z?,?,]]L+cy°EJCf) “n

for f,neSecA(@)L and feC CLD.

4.2.9.Proposition. The mapping

c4.2.10> Secy: SecAC3), —XCL), ¥ —pCED,

L
is a homomorphism of Lie algebras.

An 1mmediate consequence of 4.2.1, 4.2.3, 4.2.7 and 4.2.9 is
4.2.11.Theorem. The system CAC§)L,E-,'BL,73 is a Lie
algebroid.
4.2.12.Remark. Let CA’,II-,~]]L’,y'D ba a subalgebroid of the
algebroid CACQD),E-,-BL,yD of the foliated groupoid & over the
same foliation F. If: 1~/ the function xp—»dimA’x is constant
on each LeF, 2 p’[A]1=p[AC3D], 3/ V veA’ 3T feSecA® (
ECp’Cvdl=v O then AL is a Lie subalgebroid of the Lie
algebroid ACQDL.
4.3. The Lie groupoid §L.
Using the Lemma I (5, p.185]1, one can prove that if n:P—B
is a coregular mapping between differential manifolds and
-:PxG—P is a right free action of a Lie group G on P whose
orbits coincide with the fibres of the projection n, then the
system (P,n,B,G, ) is a principal bundle. The properties of a
leaf and the above remark imply
4.3.1.Proposition. Let (%,0,/?,V,*D be a foliated groupoid over
a foliation with singularities F. Then, for each xeL, Le&F, the
set Gx=<he§; ah=ﬁh=x>=ﬁ;1Cx). together with the multiplication

induced from &, is a Lie group, and the system
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c4.3.2> & =C%_,n ,L,G_,:D,
x x’ % x
where -:§xxGx—+§x. Ch,ad +— hra, is a principal bundle.
With the help of local cross-sections of principal bundle
(4.3.25 we shall equip the groupoid §L=Ca,ﬁ)—1[LxLJ C with the
operations induced from & D with the structure of a Lie
groupoid. Next, we shall show that the Lie algebroids AC®

L
and AC§L) are isomorphic.
Let LeF and xel. Take a family C¢,:U, —& D > of local
i" 71 x iel
cross-sections, of the principal bundle (4.3.2) such that

UU1=L. Each cross-section ¢i determines a local coordinate
i€

representation of (4.3.2)

~ -1
C4.3.3 ¢i.UixGx—»ﬁx [Ui], Cy.a)p—+¢iCy) a.
For i, jeI, we put

-1 -1
¢i,J.UixGxxUJ—4Ca.B) [UiXUJJC§L' Cy,a,zd F— ¢JCz) a ¢1Cy) .
Notice first that
1 ULme =% ,
i,jeIi"j L

27 éi JlS a bijection, i,jel,
3/ the set ¢i [Im¢k lJvis open in UixGxxUj and the mapping
¢k 1 ¢ i is a diffeomorphism for i,j,k,lel,

4 for g hed gzh, there exist disjoint sets Ql and Q. and

L’ 2
i,j,k,lel such that geQHéCa.ﬁD 1[UixUJ], heﬁacCa.ﬁ) 1[kaUl]
and the sets ¢ J[01], ¢k.1[Q2] are open.

Therefore (see [4] p.28), on the set §L there exists exacStly
one structure of differential manifold, such that the sets
Ca.ﬁ)—l[UixUJ] are open and the mapp;ngs '¢i 3 are

diffeomorphisms, i,jel. It is easy to see that it is a
Hausdorff manifold with a countable basis.
4.3.5. Theorem. The groupoid CiL,a.ﬂ.L.-) with the differential
structure defined above is a Lie groupoid.

Proof. Let he&L. Take i, jel such that he(a.ﬂ)—llUixUJ]. Since

—1 . i
¢i,j is a diffeomorphism and the projections prl.UixGxxUJ—-)Ui

and pr3 UixG xUJ—-»UJ are submersions, therefore, from the

commutativity of the diagrams below it follows that o, are

submersions.
Ca.ﬁ)_iluixUJ]-—-—a—-—-»Ui Cou, D 1ru Uin—i’—-—»uj
-1 ’ 1
UiXGXXUJ UixGxxUJ
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Now, we notice that if he{a,ﬁ)—itUixUj] for some i, jel,then
h—leCa.B)_ltUJin]. Thus, the smoothness of the mapping
—1:§L—»§L follows from the equality

-1 -1
¢j.i ¢1 3 CUixG XUJBCY »g,2) —Cz,g ,y)erxGxin.
To show that the partial multiplication -:QL—»éL is smooth,

take i, jel and a mapping

C¢k ix¢_ k) CU xG xU )xCU =G xUk)—+§Lx§L Note that
T C¢J K’ ¢k )[kaG xU xU xG xU ]ﬁQL*§L—C¢J.k.¢k i)[T] where
T=<{Cx, 19y Y2 Yoy ga.x) erk, gl,gaer yleUi. y,eUJ> T is open

in éL*éL) It defines the di ffeomorphism

O=CTT +—Ce, | ¢ [ 7CTI0e8 3 |T'. Then the mapping ¢;1ko-.e=
((s,a,z,t, al.s)r—act,a-al.zb) is smooth, so the multiplication

is smooth. Of course, §L is a transitive groupoid.

4.3.6. Theorem. For any Le? and xel., the following equality of

differential manifolds holds: (& > =3
L"x x

Proof. Clearly, the sets of points CéL)x and §x are equal. To

show the equality of their differential structures, we put
he(@L)x. Take cross-sections ¢:U—»§x and w:W—»ix. where U and
W are open in L, such that xeU, ¢CxD=ux and y(x>=h. Since the

mapping n:UxnyW—+Ca,ﬁ)—1[UxW]. (y.g.z)r—»w(z)~g-¢(y9—1, is a

diffeomorphism, therefore xCx,-.-):GxxW—4C§L)ermu is a
diffeomorphism; moreover ,helmaCx, -, *D. On the over hand,
;:GxxW—an_1[W]. Cg,zd —y (2D g, as a coordinate
representation, is a diffeomorphism. So, by the equality
xCx,-,-)=;, we obtain commutative diagram.
€& > _ATmacCd O id > &_cnlU]
L™ x L™ x X
X wlx, D oy
G =W id » G =W
x x

Thus the mapping id: (@ )x—aéx is a diffeomorphism.

JD—ACED

L

4.3.7. Theorem. For LeF, the mapping : AC$ (X, V) -V,

is an isomorphism of Lie algebroids. - -
Proof. Of course, # is an isomorphism on the fibres of vector
bundles. Thus it is sufficient to show that:

1/ the diagram below commutes, where BL:=ﬁ|§L

X
———————
A(ﬁ)L AC§L)

v . RO,
TL
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2/ n_i is a smooth mapping,

3/ if a commutator in the Lie algebra SecAC3D

E-.-HL, then -for any £, neSecACd)
= —-qn _ = —aL

2o [[f,n]]L—[[zeaE .aeon]] holds.

1/ is clear.

27 Note that N—1=CAC§L)3VF—+CHCVD,VDEAC§D

L is denoted by

L’ the equality

L) where m: AC QL) —L
is the canonical projection. Since nn is smooth, it is
sufficient to show that the inclusion i:ACQL)—aACQD is smooth.
To prove this, take a smooth inclusion i:éL-»é. Thus the

mapping 1i_:TC(& 3—T% is smooth, and so, i:A(iL)—qAC§) is

L
smooth.

37 Let E.ﬁeSecACé) and xeL. Then there exist a neighbourhood

U of x open in LLand cross-sections ¥¢,neSecAC®d, such that
ECyd)=Cy,ECydD, nCyd=Cy,nCyd?> and [[E,B]]LCy>=Cy.|[f,n]]Cy)> for
yeU. Thus nncﬂf,ﬁnLCy))=uCy.ﬂf.nﬂy=ﬂf.nﬂ(y) for yeU it means
Cao_nc [[E,B]L>|U=[[zf,n]]|u. At the same time, uoEeSecA@L) and
CuofdCyd=aCy,ECydd=£Cyd. Hence Cxnef) |U=f|U and

3000 e8> [U, Ceomd [UL"=[ [Usn|U]". By <% and %, the
equality unﬂf,ﬁnL=Exef,uo5nL follows from the following lemma:
4.3.8.Lemma. For any xe€lL and ¢,neSecAC®), we have

¢|L, n|LeSecAC§L) and I[E.n]](x)=[[E|L..n|L]]LCx).

Proof. First, we notice that, for ¥eSecAC(®d, the equality

C 336300 Cf|L)’=E’|§L holds. Indeed, for heéL, Cf|L)'Ch)=
CDh)ﬁhCEIL)ﬂh=CDh)*ﬁthﬁh)=f’Ch)=Cf’|§L)Ch). From (¢ it.
follows, in particular, that ElL:L—aACﬁL) is smooth. Take
& ,neSecACP). From C3e363€) , 4.3.6 and 1.8 we obtain
|[z|L,n|L]]LCx3=[cg|L)'.cn|L>']cUx3=[f'|§L,n'|§LICuXJ=

=Lgr @ > a0t €8> ICu D=0 |2 40" |8 ICu >=1E" 0" ] |8, Cu 0=
=[[¢ > n]jc>0.

5. On the inducing of a foliated subgroupoid by a foliated
subalgebroid.

To end with our paper we give a generalization of the
following theorem:
5.1. Theorem [10]. Let &=(&,a,3,V,') be a Lie groupoid and A -
its algebroid. For each Lie subalgebroid A'=CA'.E',']’.ﬁ*|A')

of the Lie algebroid A, there exists exactly one connected Lie
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subgroupoid of & whose algebroid is equal to A’.

5.2. Theorem. Let F be a foliation with singularities of the
manifold V, (3,0 ,0,2,V,) - a foliated groupoid over F, and
A=CAC§),E-.'],y3 - its algebroid. Then, for any subalgebroid
Ar=CA’,[-.']"+¥|a’> of the algebroid A, the following
conditions are esquivalent:

1> there exists an o-connected foliated subgroupoid over the
foliation F whose algebroid is equal to A’, ( a—-connectedness
of an arbitrary sméﬁth groupoid means that all leaves of it
are connected),

2) A’ is a foliated algebroid over F.

For all such subgroupoids, their leaves over the same point
are identical. Among these groupcids, there exists a
subgroupoids with the topology induced from &. It is uniquely
determined.

Proof.13 3 2) is clear.

2> » 13. Let A’ be a foliated subalgebroid over the foliation
F and let LeF. By thecrem 4.3.5, the groupoid §L=Ca,ﬁ)—1[LxL]
has a natural differential structure of a Lie groupcoid, and,

by theorem 4.32.7, the algebroidA (% 2 is i1somorphic to ACED

L L’
By remark 4.2.12, A’ is a Lie algebroid. Moreover, it is a Lie

subalgebroid of t;; Lie algebroid ACQDL. Denote by j an
inclusion A’L—aACQDL. Since a:AC§DL—aAC§)L, (X, V) >V, is an
isomorphism, therefore x#e¢j is a monomorphism of vector
bundles. Then ,obviously, the image of A’L under »#ej is a Lie
subalgebroid of the Lie algebroid AC§LD. By theorem 5.1, there
iz exactly one connected subgroupoid §'L of the groupoid &L
whose algebroid is equal to Cnoj)[AC@)L]. Put &’:= L. That

the system (&’ ,a|&’,3|28’.V, |8'%%’D is, of course, a groupoid,
and, &’ together with a differential structure induced from
the groupoid &, 1s a groupoid in the category of differential
spaces. We shall show that it is a smooth groupoid. Let xeV.
The differential manifold Q;. being a leaf of the groupeoid §L
when xeL, is a leaf of the manifold §x Csee [101)>. Since ix {s
a leaf of the differential space &, so is Q;. Thus 5; is a
leaf of the differential space &’ because the differential

structure on &’ is induced from &. Next, we notice that the
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equality Tui§‘L)x=Aix implies the equality of sets AC3’D=A’.
Since the inclusion i:A’—A is an embedding, thé differential
structure of the algebroid A’ is induced from A, and so, it is
the same as the differential structure of the algebroid ACE’D.
Hence A’ is an algebroid of the groupoid &'. Let &', %'’ be
two o-connected subgroupoid whose algebroids are equal to A’.
Since, for xeV, the manifolds éé, and §;’ are the maximal
integral manifolds of the same distribution on the manifold
§x, the leaves éé and Q;’ are equal.

Now, let &' and &’’’ have the topologies induced from &. Since
§; and §;’ are connected sets for xeV, therefore QL and §L’

are connected Lie groupoids whose Lie algebroids are equal AL

where L is the leaf through x. Thus, by theorem 5.1, §L=§L‘,
hence the sets ¢’ and &'’ are equal. And since both have the
differential structures induced from &, the groupoids &' and
3’ are identical. ' '
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